CAREER: Recrystallization in additive manufactured metallic materials

职业:增材制造金属材料的再结晶

基本信息

项目摘要

NON-TECHNICAL SUMMARY Near-net-shape, metal additive manufacturing (AM) (also known as 3D printing) may allow for a major paradigm shift in the automotive, aerospace and energy generation industries. The main challenge that remains for broad adoption of metal AM is the obtaining of comparable and consistent mechanical properties such as strength and ductility in all orientations regardless of print direction. This project explores the basic science of thermal treatments after printing to control the composition and arrangement of metals, at the atomic scale, to obtain uniform mechanical properties throughout a 3D printed part. Advanced high magnification imaging of defects that occur at an atomic level, called dislocations, is revealing how they organize themselves and what role they play in encouraging or discouraging the formation of inner structures in metals known as “grains”. These inner structures fundamentally dictate a metal’s performance and the process of creating smaller defect free grains is a process known as recrystallization. This research generates new perspectives on dislocations and recrystallization in AM to increase mechanical performance and enable longer lifespans during service. This research also intertwines with educational and outreach activities aiming to increase awareness of and participation in additive manufacturing among traditionally underrepresented communities. Activities include: incorporation of AM within laboratory courses at the undergraduate and graduate levels, creation of a research center focused on AM at the University of Illinois, Urbana-Champaign, and continuous development of a free-to-participants, materials-themed summer camp for middle-school girls targeting underrepresented minorities of low income. TECHNICAL SUMMARY Additive manufacturing (AM) enables near-net-shaping across a large variety of materials, thereby reducing the need for machining while also reducing waste. Unfortunately, this process generally induces strongly anisotropic properties which limit broad adoption as a manufacturing technique. Post-build annealing treatments aiming to trigger recrystallization are a simple and cost-efficient strategy to reduce property anisotropy in any geometry. Yet, despite a high dislocation density, most AM materials recrystallize surprisingly sparsely and with sluggish kinetics; an observation that still remains to be understood. The project is elucidating the fundamental mechanisms driving recrystallization in AM metallic materials fabricated by laser powder-bed fusion and directed energy deposition. An experimental-numerical correlative framework using electron microscopy combined with in-situ synchrotron experiments is being implemented to accurately map, digitize and analyze AM microstructures during recrystallization. Results are allowing for quantitative measurement of driving forces with a view to enable physics-based microstructure evolution laws tailored specifically to AM materials. With this approach, transformative printing and alloy design strategies for AM materials with isotropic properties are being produced. Research efforts are accompanied by outreach initiatives exposing under-represented populations in central Illinois at the middle school, undergraduate, graduate and professional levels to the rapidly evolving field of AM. This project also enables the incorporation of metal AM into the undergraduate and graduate curriculum at the University of Illinois Urbana-Champaign.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
近净成形金属增材制造(AM)(也称为3D打印)可能会导致汽车、航空航天和能源发电行业的重大范式转变。广泛采用金属AM的主要挑战是获得可比较和一致的机械性能,例如在所有方向上的强度和延展性,而无论打印方向如何。该项目探索了打印后热处理的基础科学,以在原子尺度上控制金属的成分和排列,从而在整个3D打印部件中获得均匀的机械性能。在原子水平上发生的缺陷(称为位错)的先进高放大率成像揭示了它们如何组织自己,以及它们在鼓励或阻止金属内部结构(称为“晶粒”)形成方面发挥了什么作用。这些内部结构从根本上决定了金属的性能,并且产生更小的无缺陷晶粒的过程被称为再结晶。 这项研究为AM中的位错和再结晶提供了新的视角,以提高机械性能并延长使用寿命。这项研究还与教育和宣传活动交织在一起,旨在提高传统上代表性不足的社区对增材制造的认识和参与。活动包括:将AM纳入本科和研究生阶段的实验室课程,在伊利诺伊大学厄巴纳-香槟分校建立一个专注于AM的研究中心,并继续开发免费参与者,以材料为主题的夏令营,针对低收入少数民族的中学女生。增材制造(AM)能够在各种材料上实现近净成形,从而减少了对机加工的需求,同时也减少了浪费。不幸的是,这种工艺通常会引起强烈的各向异性,这限制了作为制造技术的广泛采用。旨在触发再结晶的成型后退火处理是一种简单且具有成本效益的策略,可降低任何几何形状的性能各向异性。然而,尽管位错密度很高,但大多数AM材料的再结晶令人惊讶地稀疏且动力学缓慢;这一观察结果仍有待理解。该项目旨在阐明激光粉末床熔融和定向能量沉积制备AM金属材料中驱动再结晶的基本机制。一个实验-数值相关的框架,使用电子显微镜结合原位同步加速器实验正在实施精确映射,测量和分析AM再结晶过程中的微观结构。结果是允许定量测量的驱动力,以期使基于物理的微观结构演变规律专门为AM材料。通过这种方法,正在为具有各向同性特性的AM材料生产变革性的打印和合金设计策略。研究工作是伴随着外联活动暴露在伊利诺伊州中部的代表性不足的人口在中学,本科,研究生和专业水平的快速发展的AM领域。该项目还将金属增材制造纳入伊利诺伊大学厄巴纳-香槟分校的本科生和研究生课程。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Functionally graded stainless steels with tailored grain boundary serration
  • DOI:
    10.1016/j.scriptamat.2023.115714
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    6
  • 作者:
    Y. Nie;Y.T. Chang;M. Charpagne
  • 通讯作者:
    Y. Nie;Y.T. Chang;M. Charpagne
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marie Agathe Charpagne其他文献

Marie Agathe Charpagne的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

CAREER: Understanding Interface Controlled Mechanisms of Recrystallization in Microstructurally Complex Mg Alloys
职业:了解微观结构复杂镁合金中界面控制的再结晶机制
  • 批准号:
    2339387
  • 财政年份:
    2024
  • 资助金额:
    $ 61.96万
  • 项目类别:
    Continuing Grant
Systematic understanding of inhibition behavior of ice crystal recrystallization by antifreeze proteins to improve quality of frozen foods
系统了解抗冻蛋白对冰晶重结晶的抑制行为,以提高冷冻食品的质量
  • 批准号:
    23K02007
  • 财政年份:
    2023
  • 资助金额:
    $ 61.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Understanding Dynamic Recrystallization Mechanisms in Hybrid In-situ Rolled Additive Manufacturing
职业:了解混合原位轧制增材制造中的动态再结晶机制
  • 批准号:
    2237401
  • 财政年份:
    2023
  • 资助金额:
    $ 61.96万
  • 项目类别:
    Standard Grant
Partial Freezing of Liver Sections Using Novel Small-Molecule Ice Recrystallization Inhibitors
使用新型小分子冰再结晶抑制剂部分冷冻肝脏切片
  • 批准号:
    573118-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 61.96万
  • 项目类别:
    University Undergraduate Student Research Awards
Does dynamic recrystallization enrich gold deposits? A field- to micro-scale study of the Goliath gold complex
动态重结晶是否可以富集金矿?
  • 批准号:
    580727-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 61.96万
  • 项目类别:
    Alliance Grants
Using Ice Recrystallization Inhibitors in Bulk Droplet Vitrification for Ice-free Cell Cryopreservat
在无冰细胞冷冻保存的散装液滴玻璃化中使用冰重结晶抑制剂
  • 批准号:
    573081-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 61.96万
  • 项目类别:
    University Undergraduate Student Research Awards
Enabling the cryopreservation of embryos from aquatic species using ice recrystallization inhibitors
使用冰重结晶抑制剂实现水生物种胚胎的冷冻保存
  • 批准号:
    RGPIN-2020-04924
  • 财政年份:
    2022
  • 资助金额:
    $ 61.96万
  • 项目类别:
    Discovery Grants Program - Individual
Innovation in air filtration devices using advanced salt recrystallization techniques
采用先进盐重结晶技术的空气过滤装置创新
  • 批准号:
    RGPIN-2018-04314
  • 财政年份:
    2022
  • 资助金额:
    $ 61.96万
  • 项目类别:
    Discovery Grants Program - Individual
Simultaneous improvement of strength and room-temperature formability of rolled Mg alloy by dynamic recrystallization based microstructural control
基于动态再结晶的微观结构控制同时提高轧制镁合金的强度和室温成形性
  • 批准号:
    22K18900
  • 财政年份:
    2022
  • 资助金额:
    $ 61.96万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Innovation in air filtration devices using advanced salt recrystallization techniques
采用先进盐重结晶技术的空气过滤装置创新
  • 批准号:
    RGPIN-2018-04314
  • 财政年份:
    2021
  • 资助金额:
    $ 61.96万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了