CAREER: Modulating Optoelectronic Properties and Functionality of Hybrid Organic-Inorganic Semiconductors by Controlling Lattice Strain with Molecular Interactions at Surfaces

职业:通过表面分子相互作用控制晶格应变来调节有机-无机杂化半导体的光电特性和功能

基本信息

  • 批准号:
    2237211
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-04-01 至 2028-03-31
  • 项目状态:
    未结题

项目摘要

As climate change accelerates, increased reliance on renewable energy sources is necessary. One particularly promising renewable energy technology is metal halide perovskite (MHP)-based photovoltaics, which can provide lightweight, low-cost power sources for commercial and residential, disaster relief, military, and space applications. MHPs exhibit similar efficiencies to more established technologies such as silicon photovoltaics, but with lower production cost and waste. However, MHPs have intrinsic mechanical and chemical instabilities that currently prevent commercial viability. This project will be focused on addressing these instabilities through developing an understanding of how stresses that form in the MHPs during fabrication influence performance and stability, and how these effects can be mitigated through directed growth or stress modulation by using organic ligands (or additives). The fundamental scientific knowledge produced by this project will benefit society by elucidating the relationship between lattice strain, stability, and performance in solution-processable organic-inorganic hybrid materials, which can be used to reduce the material use and cost, improving access to renewable energy. In parallel, we will develop and present “research readiness” seminars for marginalized students via established University of Arizona programs. In these seminars, we will also launch a new video outreach pilot program—Scientists Like Me—designed to increase self-concept as a researcher in these communities. Finally, we will build upon these interrelated efforts to inform curriculum development for a cornerstone course for the first of its kind Renewable Energy Science and Engineering minor—which will accelerate the dissemination of this knowledge to our communities and help train a more diverse workforce for renewable energy.This project will utilize organic molecules to control lattice strain in metal halide perovskites to modulate the optoelectronic behavior of these systems. In particular, we will focus on three interrelated questions: (1) How do lattice strain gradients influence defect migration and localization? (2) How does the molecular structure of additives in perovskite inks affect nucleation, growth, and orientation of crystallites? and (3) How can the molecular structure of additives influence lattice strains in perovskites? Successfully answering these questions will be a significant step towards realizing scalable production of stable high-performance solution-processable devices, enabling low-cost and transformative applications such as renewable energy, energy-efficient lighting and displays, and portable and wearable sensors for health care. We will synergistically use benchtop and computational experiments to inform research pathways and build towards a goal of understanding how molecular additives and their interactions at MHP surfaces can influence stability and performance through strain modulation. Furthermore, we will develop broad design rules for additive selection based on specific chemistries and stoichiometries of a range of perovskite compositions. The need for these broad design rules has become increasingly important given the ever-expanding library of metal halide perovskite compositions, each with their own complex and varied surface chemistries. Finally, we will implement a new strategy to improve the stability and performance of perovskite devices by informed design and selection of molecular additives to modulate the film stresses to control defect migration, charge transport, and band gap.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着气候变化的加速,有必要增加对可再生能源的依赖。一种特别有前途的可再生能源技术是基于金属卤化物钙钛矿(MHP)的光致发光材料,它可以为商业和住宅、救灾、军事和空间应用提供轻质、低成本的电源。MHP表现出与更成熟的技术(例如硅光致发光)类似的效率,但具有更低的生产成本和浪费。然而,MHP具有固有的机械和化学不稳定性,目前阻碍了商业可行性。该项目将专注于解决这些不稳定性,通过开发制造过程中MHP中形成的应力如何影响性能和稳定性的理解,以及如何通过使用有机配体(或添加剂)的定向生长或应力调制来减轻这些影响。该项目产生的基础科学知识将通过阐明可溶液加工的有机-无机杂化材料中晶格应变,稳定性和性能之间的关系而造福社会,可用于减少材料使用和成本,改善可再生能源的获取。与此同时,我们将通过亚利桑那大学的既定计划,为边缘化学生开发和举办“研究准备”研讨会。在这些研讨会中,我们还将推出一个新的视频外展试点计划--像我这样的科学家--旨在提高这些社区研究人员的自我概念。最后,我们将在这些相互关联的努力的基础上,为第一个可再生能源科学与工程未成年人的基础课程的课程开发提供信息-该项目将利用有机分子来控制金属卤化物钙钛矿中的晶格应变,以调节这些材料的光电行为。系统.特别是,我们将集中在三个相互关联的问题:(1)晶格应变梯度如何影响缺陷的迁移和本地化?(2)钙钛矿油墨中添加剂的分子结构如何影响微晶的成核、生长和取向?(3)添加剂的分子结构如何影响钙钛矿的晶格应变?成功回答这些问题将是实现稳定的高性能解决方案可处理设备的可扩展生产的重要一步,从而实现低成本和变革性应用,如可再生能源,节能照明和显示器以及用于医疗保健的便携式和可穿戴传感器。我们将协同使用台式和计算实验,为研究途径提供信息,并朝着了解分子添加剂及其在MHP表面的相互作用如何通过应变调制影响稳定性和性能的目标发展。此外,我们将根据一系列钙钛矿组合物的特定化学和化学计量,为添加剂选择制定广泛的设计规则。考虑到不断扩大的金属卤化物钙钛矿组合物库,对这些广泛的设计规则的需求变得越来越重要,每种组合物都具有自己复杂和不同的表面化学性质。最后,我们将实施一项新的战略,通过明智的设计和选择分子添加剂来调节薄膜应力,以控制缺陷迁移、电荷传输和带隙,从而提高钙钛矿器件的稳定性和性能。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Influence of Halides on the Interactions of Ammonium Acids with Metal Halide Perovskites
  • DOI:
    10.1021/acsami.3c01432
  • 发表时间:
    2023-05-10
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    Li, Yanan;Lohr, Patrick J.;Printz, Adam D.
  • 通讯作者:
    Printz, Adam D.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Adam Printz其他文献

Adam Printz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Modulating H2O Activity Promotes CO2 Reduction to Multi-Carbon Products
调节 H2O 活性可促进多碳产品的 CO2 还原
  • 批准号:
    2326720
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CAREER: Modulating endothelial cell function using targeted electrical stimulation
职业:使用靶向电刺激调节内皮细胞功能
  • 批准号:
    2338949
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
The role of indoor dust in modulating indoor air chemistry: assessing air-dust heterogeneous transformations and human exposures
室内灰尘在调节室内空气化学方面的作用:评估空气-灰尘异质转化和人体暴露
  • 批准号:
    2341756
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Elucidating mechanisms underlying multivalency modulating lectin-glycan binding and assembly properties-implications for lectin function regulation
阐明多价调节凝集素-聚糖结合和组装特性的机制-对凝集素功能调节的影响
  • 批准号:
    BB/Y005856/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
Elucidation of the universality and regulatory factors of megacomplex formation for modulating light-harvesting properties in photosystems
阐明用于调节光系统中光捕获特性的巨型复合物形成的普遍性和调节因素
  • 批准号:
    23K14216
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Identification of brain-spinal cord neural circuits modulating itch
调节瘙痒的脑脊髓神经回路的鉴定
  • 批准号:
    23KJ1021
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Investigate the role of the immune system in modulating motor behavior in a maternal immune activation mouse model of autism spectrum disorder
研究免疫系统在调节自闭症谱系障碍母体免疫激活小鼠模型运动行为中的作用
  • 批准号:
    22KJ3080
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Modulating the PD-1/PD-L1 checkpoint to promote antitumor activity of HER2 CAR T cells in patients with sarcoma
调节PD-1/PD-L1检查点促进肉瘤患者HER2 CAR T细胞的抗肿瘤活性
  • 批准号:
    10562836
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
Modulating the immuno-metabolic interplay in liver cancer with cryoablation
通过冷冻消融调节肝癌的免疫代谢相互作用
  • 批准号:
    10647494
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
Intra-Articular Drug Delivery Modulating Immune Cells in Inflammatory Joint Disease
关节内药物递送调节炎症性关节疾病中的免疫细胞
  • 批准号:
    10856753
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了