CAREER: Modulating Optoelectronic Properties and Functionality of Hybrid Organic-Inorganic Semiconductors by Controlling Lattice Strain with Molecular Interactions at Surfaces

职业:通过表面分子相互作用控制晶格应变来调节有机-无机杂化半导体的光电特性和功能

基本信息

  • 批准号:
    2237211
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-04-01 至 2028-03-31
  • 项目状态:
    未结题

项目摘要

As climate change accelerates, increased reliance on renewable energy sources is necessary. One particularly promising renewable energy technology is metal halide perovskite (MHP)-based photovoltaics, which can provide lightweight, low-cost power sources for commercial and residential, disaster relief, military, and space applications. MHPs exhibit similar efficiencies to more established technologies such as silicon photovoltaics, but with lower production cost and waste. However, MHPs have intrinsic mechanical and chemical instabilities that currently prevent commercial viability. This project will be focused on addressing these instabilities through developing an understanding of how stresses that form in the MHPs during fabrication influence performance and stability, and how these effects can be mitigated through directed growth or stress modulation by using organic ligands (or additives). The fundamental scientific knowledge produced by this project will benefit society by elucidating the relationship between lattice strain, stability, and performance in solution-processable organic-inorganic hybrid materials, which can be used to reduce the material use and cost, improving access to renewable energy. In parallel, we will develop and present “research readiness” seminars for marginalized students via established University of Arizona programs. In these seminars, we will also launch a new video outreach pilot program—Scientists Like Me—designed to increase self-concept as a researcher in these communities. Finally, we will build upon these interrelated efforts to inform curriculum development for a cornerstone course for the first of its kind Renewable Energy Science and Engineering minor—which will accelerate the dissemination of this knowledge to our communities and help train a more diverse workforce for renewable energy.This project will utilize organic molecules to control lattice strain in metal halide perovskites to modulate the optoelectronic behavior of these systems. In particular, we will focus on three interrelated questions: (1) How do lattice strain gradients influence defect migration and localization? (2) How does the molecular structure of additives in perovskite inks affect nucleation, growth, and orientation of crystallites? and (3) How can the molecular structure of additives influence lattice strains in perovskites? Successfully answering these questions will be a significant step towards realizing scalable production of stable high-performance solution-processable devices, enabling low-cost and transformative applications such as renewable energy, energy-efficient lighting and displays, and portable and wearable sensors for health care. We will synergistically use benchtop and computational experiments to inform research pathways and build towards a goal of understanding how molecular additives and their interactions at MHP surfaces can influence stability and performance through strain modulation. Furthermore, we will develop broad design rules for additive selection based on specific chemistries and stoichiometries of a range of perovskite compositions. The need for these broad design rules has become increasingly important given the ever-expanding library of metal halide perovskite compositions, each with their own complex and varied surface chemistries. Finally, we will implement a new strategy to improve the stability and performance of perovskite devices by informed design and selection of molecular additives to modulate the film stresses to control defect migration, charge transport, and band gap.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着气候变化的加速,需要增加对可再生能源的依赖。一个特别承诺可再生能源技术的是金属卤化物钙钛矿(MHP)的光伏技术,它可以为商业和居民提供轻巧,低成本的电源,救灾,军事和空间应用。 MHP具有与诸如硅光伏等更具成熟技术相似的效率,但生产成本和浪费较低。但是,MHP具有固有的机械和化学不稳定性,目前可以防止商业生存能力。该项目将通过了解制造过程中MHP中形成的压力如何影响性能和稳定性,以及如何通过使用有机配体(或添加剂)通过定向生长或压力调节来减轻这些效果来解决这些不稳定性。该项目产生的基本科学知识将通过阐明晶格应变,稳定性和性能之间的关系之间的关系来使社会受益,这可以用于减少材料的使用和成本,从而改善对可再生能源的访问。同时,我们将通过既定的亚利桑那大学计划为边缘化的学生开发和呈现“研究准备”下水道。在这些下水道中,我们还将启动一项新的视频推广试点计划(像我这样的科学家),他们设计了以增加这些社区研究人员的自我概念。 Finally, we will build upon these interrelated efforts to inform curriculum development for a cornerstone course for the first of its kind Renewable Energy Science and Engineering minor—which will accelerate the dissemination of this knowledge to our communities and help train a more diverse workforce for renewable energy.This project will utilize organic molecules to control lattice strain in metal halide perovskites to modulate the optoelectronic behavior of these systems.特别是,我们将重点关注三个相互关联的问题:(1)晶格应变梯度如何影响缺陷迁移和定位? (2)钙钛矿墨水中添加剂的分子结构如何影响晶体的成核,生长和方向? (3)添加剂的分子结构如何影响钙钛矿中的晶格菌株?成功回答这些问题将是实现可扩展的高性能解决方案处理设备的重要一步,从而实现了低成本和变革性的应用,例如可再生能源,能源有效的照明和显示器以及便携式和可穿戴的医疗保健传感器。我们将协同使用台式和计算实验来为研究途径提供信息,并朝着了解MHP表面上的分子添加剂及其相互作用的目标,从而通过菌株调节来影响稳定性和性能。此外,我们将根据一系列钙钛矿组成的特定化学和化学计量法制定广泛的设计规则,以增加选择。考虑到金属卤化物钙钛矿组成的库存库,对这些广泛的设计规则的需求变得越来越重要,每个库都有自己的复杂而多样的表面化学。最后,我们将通过知情的设计和分子添加剂的选择来实施一种新策略,以改善钙钛矿设备的稳定性和性能,以调节膜的压力,以控制缺陷迁移,冲锋运输和乐队GAP。该奖项反映了NSF的法定任务,并通过使用基金会的知识优点和广泛影响来评估NSF的法定任务,并以评估的方式被认为是宝贵的。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Influence of Halides on the Interactions of Ammonium Acids with Metal Halide Perovskites
  • DOI:
    10.1021/acsami.3c01432
  • 发表时间:
    2023-05-10
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    Li, Yanan;Lohr, Patrick J.;Printz, Adam D.
  • 通讯作者:
    Printz, Adam D.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Adam Printz其他文献

Adam Printz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于人车双向感知的驾驶人状态调节策略设计与优化
  • 批准号:
    72301151
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
以22q11.21重复变异的孤独症谱系障碍病人为模型研究THAP7调节血清素代谢的分子机制
  • 批准号:
    32300488
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
剪接因子SNRPA1通过调节R-loop稳态影响肺腺癌发展进程的机制研究
  • 批准号:
    32360143
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
SRB1+肿瘤相关成纤维细胞对肝癌免疫治疗疗效双向调节作用的机制研究
  • 批准号:
    82373318
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
靶向Blimp-1调控浆细胞/调节性B细胞在系统性硬化症中的作用及机制研究
  • 批准号:
    82360326
  • 批准年份:
    2023
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Modulating H2O Activity Promotes CO2 Reduction to Multi-Carbon Products
调节 H2O 活性可促进多碳产品的 CO2 还原
  • 批准号:
    2326720
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CAREER: Modulating endothelial cell function using targeted electrical stimulation
职业:使用靶向电刺激调节内皮细胞功能
  • 批准号:
    2338949
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
The role of indoor dust in modulating indoor air chemistry: assessing air-dust heterogeneous transformations and human exposures
室内灰尘在调节室内空气化学方面的作用:评估空气-灰尘异质转化和人体暴露
  • 批准号:
    2341756
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Elucidating mechanisms underlying multivalency modulating lectin-glycan binding and assembly properties-implications for lectin function regulation
阐明多价调节凝集素-聚糖结合和组装特性的机制-对凝集素功能调节的影响
  • 批准号:
    BB/Y005856/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
Elucidation of the universality and regulatory factors of megacomplex formation for modulating light-harvesting properties in photosystems
阐明用于调节光系统中光捕获特性的巨型复合物形成的普遍性和调节因素
  • 批准号:
    23K14216
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了