CAREER: Efficient brain connectome dynamics enabling transitions across cognitive domains

职业:高效的大脑连接组动力学实现跨认知领域的转变

基本信息

项目摘要

In everyday life, we must continuously and rapidly transition across diverse cognitive domains such as memory, language, social, emotional, and perceptual processes. This project aims to show how the brain maintains the ability to rapidly transition among such a broad range of cognitive processes while still being able to maintain stable focus on a single process when needed. Specifically, the researchers predict a key role for the brain’s state of connectivity, i.e., how distributed brain regions synchronize activity at any given moment, with spontaneous transitions between a diverse set of such brain states enable transitions across cognitive domains. Here, brain states are considered diverse when each of the states allows a different set of brain regions to connect with each other. Flexible transitions across cognitive domains contribute to adaptive functioning in all areas and stages of life. Thus, understanding what brain processes contribute to cognitive transitions would have broad implications for mental health, education, and beyond. Directly building on this research, hands-on educational innovations and public outreach are planned to create broader awareness of ongoing brain processes and their implications. Due to the wide-ranging importance of cognitive flexibility, insights gained from this project may have far-reaching consequences for understanding and improving developmental trajectories and enhancing quality of life.The ability to switch across cognitive domains is not well-captured in classic shifting paradigms; Prior paradigms typically require switching across a small set of task rules or stimulus features, often within one cognitive domain. The proposed research introduces a more ecologically valid paradigm in which participants detect target images or sounds that rapidly switch among diverse cognitive domains. This paradigm, by design, increases cognitive transition demands. Because cognitive domain transitions in everyday life occur at various speeds, this work takes a cutting-edge approach to record brain connectivity concurrently in fMRI to best capture slow processes, and in EEG to have sensitivity to fast processes. Specifically, Objective 1 tests whether brain connectivity states occur in sequences that optimize the diversity of how brain regions are connected over time. Objective 2 tests whether sequences of diverse brain connectivity states support behavioral performance when rapidly transitioning across cognitive domains, whilst retaining the ability to focus on individual domains.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在日常生活中,我们必须持续快速地跨越不同的认知领域,如记忆、语言、社会、情感和知觉过程。这个项目旨在展示大脑如何保持在如此广泛的认知过程中快速转换的能力,同时仍然能够在需要时保持对单个过程的稳定关注。具体地说,研究人员预测了大脑连接状态的关键作用,即分布式大脑区域如何在任何给定时刻同步活动,不同大脑状态之间的自发转换使跨认知域的转换成为可能。在这里,当每种状态允许一组不同的大脑区域相互连接时,大脑状态就被认为是不同的。跨认知领域的灵活转换有助于在生命的所有领域和阶段发挥适应功能。因此,了解大脑过程对认知转变的贡献将对心理健康、教育和其他方面产生广泛的影响。直接建立在这项研究的基础上,计划实践教育创新和公共宣传,以创造对正在进行的大脑过程及其影响的更广泛的认识。由于认知灵活性的广泛重要性,从这个项目中获得的见解可能会对理解和改善发展轨迹以及提高生活质量产生深远的影响。在传统的转换范式中,转换认知领域的能力并不是很好地捕捉到;先前的范式通常需要转换一小组任务规则或刺激特征,通常是在一个认知领域内。这项拟议的研究引入了一种更具生态有效性的范式,参与者可以检测到目标图像或声音,这些图像或声音可以在不同的认知域之间快速切换。这种范式的设计增加了认知转变的需求。由于日常生活中认知领域的转变以不同的速度发生,这项工作采用了一种尖端方法,在fMRI中同时记录大脑连接,以最好地捕捉缓慢的过程,并在EEG中对快速过程具有敏感性。具体地说,目标1测试大脑连接状态是否出现在优化大脑区域随时间连接的多样性的序列中。目标2测试不同大脑连接状态的序列是否支持在认知领域快速转换时的行为表现,同时保持专注于个别领域的能力。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sepideh Sadaghiani其他文献

Effects of task type on spontaneous alternations of attentional states.
任务类型对注意力状态自发交替的影响。
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Mark Weber;Emily Cunningham;Diane M. Beck;Sepideh Sadaghiani;R. Wang
  • 通讯作者:
    R. Wang
Concurrent EEG- and fMRI-derived functional connectomes exhibit linked dynamics
同时脑电图和功能磁共振成像衍生的功能连接组表现出相关的动力学
  • DOI:
    10.1101/464438
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    5.7
  • 作者:
    Jonathan Wirsich;A. Giraud;Sepideh Sadaghiani
  • 通讯作者:
    Sepideh Sadaghiani
Safety and data quality of simultaneous EEG-fMRI using multi-band fMRI imaging
使用多波段功能磁共振成像同步脑电图功能磁共振成像的安全性和数据质量
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Maximillian K. Egan;R. Larsen;Jonathan Wirsich;B. Sutton;Sepideh Sadaghiani
  • 通讯作者:
    Sepideh Sadaghiani
Long Title : Safety and data quality of simultaneous EEG-fMRI using multi-band fMRI imaging 2
长标题:使用多波段 fMRI 成像进行同步 EEG-fMRI 的安全性和数据质量 2
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Maximillian K. Egan;R. Larsen;Jonathan Wirsich;B. Sutton;Sepideh Sadaghiani
  • 通讯作者:
    Sepideh Sadaghiani
Endogenous preparatory control is associated with increased interaction between default mode and dorsal attention networks
内源性准备控制与默认模式和背侧注意网络之间相互作用的增加有关
  • DOI:
    10.1162/imag_a_00124
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Maximillian K. Egan;Cyril Costines;M. D’Esposito;Sepideh Sadaghiani
  • 通讯作者:
    Sepideh Sadaghiani

Sepideh Sadaghiani的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

CAREER: Exploring Mixed-Signal Computation for Energy-Efficient and Robust Brain-Machine Interfaces
职业:探索节能且鲁棒的脑机接口的混合信号计算
  • 批准号:
    2338159
  • 财政年份:
    2024
  • 资助金额:
    $ 90万
  • 项目类别:
    Continuing Grant
Robust and Efficient Learning of High-Resolution Brain MRI Reconstruction from Small Referenceless Data
从小型无参考数据中稳健而高效地学习高分辨率脑 MRI 重建
  • 批准号:
    10584324
  • 财政年份:
    2023
  • 资助金额:
    $ 90万
  • 项目类别:
A nanosized magnetic particle system for fast and efficient neuronal extracellular vesicle enrichment from plasma
一种纳米磁性粒子系统,用于从血浆中快速有效地富集神经元细胞外囊泡
  • 批准号:
    10820640
  • 财政年份:
    2023
  • 资助金额:
    $ 90万
  • 项目类别:
Advancing fMRI Acquisition through Dissemination of EPTI- An Efficient Distortion-Free Multi-Contrast Imaging Technology
通过传播 EPTI(一种高效的无失真多重对比成像技术)推进 fMRI 采集
  • 批准号:
    10572005
  • 财政年份:
    2023
  • 资助金额:
    $ 90万
  • 项目类别:
Development of an Efficient High Throughput Technique for the Identification of High-Impact Non-Coding Somatic Variants Across Multiple Tissue Types
开发一种高效的高通量技术,用于鉴定跨多种组织类型的高影响力非编码体细胞变异
  • 批准号:
    10662860
  • 财政年份:
    2023
  • 资助金额:
    $ 90万
  • 项目类别:
Development and validation of efficient cognitive composite scores of digital tools for the detection of early pathophysiological changes in Alzheimers disease
开发和验证数字工具的有效认知综合评分,用于检测阿尔茨海默病的早期病理生理变化
  • 批准号:
    10642370
  • 财政年份:
    2023
  • 资助金额:
    $ 90万
  • 项目类别:
Developing Hepatoselective Hepatitis B Therapeutic Dihydroquinolizinone (DHQ) Molecules with Better Safety Profiles for Efficient HBsAg Reduction
开发具有更好安全性的肝选择性乙型肝炎治疗二氢喹嗪酮 (DHQ) 分子,可有效降低 HBsAg
  • 批准号:
    10384184
  • 财政年份:
    2022
  • 资助金额:
    $ 90万
  • 项目类别:
Efficient Brain Delivery of Neuroprotective TrkB Agonist Antibodies in Alzheimer’s Disease Using CD98hc Bispecific Shuttles
使用 CD98hc 双特异性穿梭细胞有效脑部递送神经保护性 TrkB 激动剂抗体治疗阿尔茨海默病
  • 批准号:
    10537474
  • 财政年份:
    2022
  • 资助金额:
    $ 90万
  • 项目类别:
Brain-inspired photonic computing for efficient next-generation telecommunications networks
用于高效下一代电信网络的受大脑启发的光子计算
  • 批准号:
    550313-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 90万
  • 项目类别:
    Alliance Grants
Efficient Two-Photon Voltage Imaging of Neuronal Populations at Behavioral Timescales
行为时间尺度神经元群的高效双光子电压成像
  • 批准号:
    10516906
  • 财政年份:
    2022
  • 资助金额:
    $ 90万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了