Brain-inspired photonic computing for efficient next-generation telecommunications networks
用于高效下一代电信网络的受大脑启发的光子计算
基本信息
- 批准号:550313-2020
- 负责人:
- 金额:$ 26.49万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Alliance Grants
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Upcoming socio-economical advances in the context of the Internet of Things, big data networks, and smart applications are placing stress on current information and communication technology infrastructure. Such demands are reaching the limit of conventional technological solutions, implying a need for novel concepts in order to process data at scale. Recurrent neural networks (RNNs) are a brain-inspired machine learning paradigm that is especially suited for parallel computing and pattern recognition, offering a processing acceleration of several orders of magnitudes. Photonic RNNs promise a versatile platform for speed of light data processing comparable in accuracy with classical software approaches, at a reduced footprint and power consumption. However, current implementations are often lacking in terms of computational power, system simplicity, or processing speed, due to the need for electro-optical conversion. In the proposed project, we will, together with our industrial partner Huawei Canada, focus on three main objectives to overcome such limitations: (i) the first demonstration of a functional photonic neuromorphic platform exploiting multiple degrees of freedom for information processing at unprecedented speeds, (ii) its real-world application towards telecommunications data processing, and (iii) the development of an efficient and compact prototype. We aim to utilize on-chip nonlinear components to target the tasks of nonlinear channel equalization and signal regeneration. The envisioned prototype will, for the first time, reveal the full potential of photonic RNNs suitable for large-scale production. The project outcome will benefit the Canadian market through the training of highly-qualified personnel (HQP) in the uniquely combined fields of integrated photonics and machine learning, with the potential for the HQP to become future leaders in both industry and academia. The commercialization of our technology will strengthen the role of Canada in the high-tech sectors of human-machine interaction and telecommunications, thus paving the way to cope with the demands of upcoming high-density transmission standards such as 6G and 400 Gb/s systems.
在物联网、大数据网络和智能应用的背景下,即将到来的社会经济进步正在给当前的信息和通信技术基础设施带来压力。这样的需求已经达到了传统技术解决方案的极限,这意味着需要新的概念来大规模处理数据。递归神经网络(rnn)是一种大脑启发的机器学习范式,特别适合并行计算和模式识别,提供几个数量级的处理加速。光子rnn有望提供一个多功能平台,在减少占地面积和功耗的情况下,在精度上可与经典软件方法相媲美。然而,由于需要电光转换,目前的实现通常在计算能力、系统简单性或处理速度方面缺乏。在拟议的项目中,我们将与我们的工业合作伙伴华为加拿大公司一起,专注于三个主要目标来克服这些限制:(i)首次展示功能性光子神经形态平台,以前所未有的速度利用多个自由度进行信息处理,(ii)其在电信数据处理方面的实际应用,以及(iii)开发高效紧凑的原型。我们的目标是利用片上非线性元件来完成非线性信道均衡和信号再生的任务。设想的原型将首次揭示适合大规模生产的光子rnn的全部潜力。该项目的成果将通过在集成光子学和机器学习的独特结合领域培训高素质人才(HQP),使加拿大市场受益,HQP有可能成为工业界和学术界未来的领导者。我们的技术商业化将加强加拿大在人机交互和电信等高科技领域的作用,从而为应对即将到来的高密度传输标准(如6G和400gb /s系统)的需求铺平道路。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Morandotti, RobertoR其他文献
Morandotti, RobertoR的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Morandotti, RobertoR', 18)}}的其他基金
Canada-UK Quantum Technologies Call: Connectorizing Integrated Quantum Photonics Devices
加拿大-英国量子技术呼吁:连接集成量子光子器件
- 批准号:
556324-2020 - 财政年份:2022
- 资助金额:
$ 26.49万 - 项目类别:
Alliance Grants
L2M NSERC - Terahertz wired technology for future networks
L2M NSERC - 面向未来网络的太赫兹有线技术
- 批准号:
580661-2023 - 财政年份:2022
- 资助金额:
$ 26.49万 - 项目类别:
Idea to Innovation
HYPER entanglement in SPACE (HyperSpace)
空间中的超纠缠(HyperSpace)
- 批准号:
569583-2021 - 财政年份:2022
- 资助金额:
$ 26.49万 - 项目类别:
Alliance Grants
Canada-UK Quantum Technologies Call: Development of Highly Efficient, Portable, and Fiber-Integrated Photonic Platforms Based on Micro-Resonators
加拿大-英国量子技术呼吁:开发基于微谐振器的高效、便携式、光纤集成光子平台
- 批准号:
556325-2020 - 财政年份:2022
- 资助金额:
$ 26.49万 - 项目类别:
Alliance Grants
相似国自然基金
多层次纳米叠层块体复合材料的仿生设计、制备及宽温域增韧研究
- 批准号:51973054
- 批准年份:2019
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Origami-inspired design for a tissue engineered heart valve
职业:受折纸启发的组织工程心脏瓣膜设计
- 批准号:
2337540 - 财政年份:2024
- 资助金额:
$ 26.49万 - 项目类别:
Continuing Grant
Convergence Accelerator Track M: Bio-Inspired Design of Robot Hands for Use-Driven Dexterity
融合加速器轨道 M:机器人手的仿生设计,实现使用驱动的灵活性
- 批准号:
2344109 - 财政年份:2024
- 资助金额:
$ 26.49万 - 项目类别:
Standard Grant
BAMBOO - Build scAled Modular Bamboo-inspired Offshore sOlar systems
BAMBOO - 构建规模化模块化竹子式海上太阳能系统
- 批准号:
10109981 - 财政年份:2024
- 资助金额:
$ 26.49万 - 项目类别:
EU-Funded
CAREER: Scalable Physics-Inspired Ising Computing for Combinatorial Optimizations
职业:用于组合优化的可扩展物理启发伊辛计算
- 批准号:
2340453 - 财政年份:2024
- 资助金额:
$ 26.49万 - 项目类别:
Continuing Grant
CAREER: SHF: Bio-Inspired Microsystems for Energy-Efficient Real-Time Sensing, Decision, and Adaptation
职业:SHF:用于节能实时传感、决策和适应的仿生微系统
- 批准号:
2340799 - 财政年份:2024
- 资助金额:
$ 26.49万 - 项目类别:
Continuing Grant
NSF-NSERC: Fairness Fundamentals: Geometry-inspired Algorithms and Long-term Implications
NSF-NSERC:公平基础:几何启发的算法和长期影响
- 批准号:
2342253 - 财政年份:2024
- 资助金额:
$ 26.49万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track L: Intelligent Nature-inspired Olfactory Sensors Engineered to Sniff (iNOSES)
NSF 融合加速器轨道 L:受自然启发的智能嗅觉传感器,专为嗅探而设计 (iNOSES)
- 批准号:
2344256 - 财政年份:2024
- 资助金额:
$ 26.49万 - 项目类别:
Standard Grant
Development of Integrated Quantum Inspired Algorithms for Shapley Value based Fast and Interpretable Feature Subset Selection
基于 Shapley 值的快速且可解释的特征子集选择的集成量子启发算法的开发
- 批准号:
24K15089 - 财政年份:2024
- 资助金额:
$ 26.49万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Bio-inspired Nanoparticles for Mechano-Regulation of Stem Cell Fate
用于干细胞命运机械调节的仿生纳米颗粒
- 批准号:
DP240102315 - 财政年份:2024
- 资助金额:
$ 26.49万 - 项目类别:
Discovery Projects
Gecko Inspired Autonomous Fabrication Of Programmable Two-dimensional Quantum Materials
壁虎启发可编程二维量子材料的自主制造
- 批准号:
EP/Y026284/1 - 财政年份:2024
- 资助金额:
$ 26.49万 - 项目类别:
Research Grant