CAREER: Molecular Approaches for Understanding Defect-Porosity Relationships in Microporous Organic Polymers
职业:理解微孔有机聚合物中的缺陷-孔隙率关系的分子方法
基本信息
- 批准号:2237499
- 负责人:
- 金额:$ 73.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-15 至 2028-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
In this CAREER project, funded jointly by the Chemical Structure, Dynamics & Mechanisms-B (CSDM-B) program in the Division of Chemistry (CHE) and the Solid State & Materials Chemistry (SSMC) program in the Division of Materials Research (DMR), Dr. James Bour and his research team at Wayne State University are studying how imperfections in polymer structures affect polymer microporosity. Microporosity is an important property affecting the performance of polymers in applications such as water purification, gas storage, gas purification, energy harvesting, sensing, and catalysis, yet there are few design principles for controlling it. The goal of this project is to address this knowledge gap by exploring the hypothesis that defects strongly influence microporosity. Dr. Bour and his team aim to establish relationships between defects and porosity through the development of chemical reactions that allow quantification and simulation of potential defect structures. These studies have the potential to result in improved understanding of key structural features in high microporosity polymers. Insights gain will aid in the hypothesis-directed design of synthetic approaches to microporous polymers. In parallel with these studies, Dr. Bour will host a yearly state continuing education clock hour program in polymer chemistry for middle and high school teachers in Michigan. This activity is designed to interface directly with early science education mission in the state, helping to prepare the nation’s future workforce in polymer science. Owing to their high microporosity, structural diversity, and robust chemical stability, porous organic polymers have potential to address modern challenges in water purification, energy harvesting, gas storage/purification, catalysis, and sensing. Polymer porosity, and ultimately their performance in these targeted applications, is strongly affected by synthetic approach. However, little is known about why some reactions consistently and significantly outperform other synthetic strategies. This project aims to address this fundamental knowledge gap by studying how reaction-dependent defect structures impact bulk porosity. Spectroscopic interrogation of defects in microporous network polymers is historically challenging. This research will instead focus on determination of defect-porosity relationships through chemical methods. Network disassembly approaches specifically designed for the rigid structures of porous polymers will be used to characterize native defectivity in model polymers. Systematic relationships between defect incidence and structure will be determined through copolymerization of conventional monomers with defect-simulating or pro-defective monomers. Taken together, these studies are expected to establish quantitative relationships between defects and porosity metrics such as apparent surface area, pore volume, and pore size distribution. Insights gained will help guide the development of improved and more controlled synthetic protocols, particularly for high surface area microporous polymers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在这个由化学系(CHE)的化学结构、动力学机制-B(CSDM-B)项目和材料研究系(DMR)的固态材料化学(SSMC)项目共同资助的CAREER项目中,韦恩州立大学的James Bour博士和他的研究团队正在研究聚合物结构的缺陷如何影响聚合物微孔性。微孔性是影响聚合物在水净化、气体储存、气体净化、能量收集、传感和催化等应用中的性能的重要属性,但很少有控制微孔性的设计原则。本项目的目标是通过探索缺陷强烈影响微孔性的假设来解决这一知识空白。Bour博士和他的团队旨在通过开发化学反应来建立缺陷和孔隙率之间的关系,从而量化和模拟潜在的缺陷结构。这些研究有可能导致在高微孔聚合物的关键结构特征的理解。获得的见解将有助于微孔聚合物合成方法的假设导向设计。在这些研究的同时,Bour博士将为密歇根州的初中和高中教师举办一个年度高分子化学国家继续教育时钟小时计划。这项活动旨在直接与该州的早期科学教育使命对接,帮助培养国家未来的聚合物科学人才。由于其高微孔性、结构多样性和强大的化学稳定性,多孔有机聚合物具有解决水净化、能量收集、气体储存/净化、催化和传感等现代挑战的潜力。聚合物的孔隙率,以及最终它们在这些目标应用中的性能,受到合成方法的强烈影响。然而,很少有人知道为什么一些反应一贯和显着优于其他合成策略。该项目旨在通过研究反应相关的缺陷结构如何影响体积孔隙率来解决这一基本知识缺口。微孔网络聚合物中缺陷的光谱分析历来具有挑战性。本研究将侧重于通过化学方法确定缺陷-孔隙度关系。专门为多孔聚合物的刚性结构设计的网络拆卸方法将用于表征模型聚合物中的天然缺陷。缺陷发生率和结构之间的系统性关系将通过常规单体与缺陷模拟或前缺陷单体的共聚来确定。 总之,这些研究有望建立缺陷和孔隙度指标(如表观表面积、孔体积和孔径分布)之间的定量关系。获得的见解将有助于指导改进和更可控的合成方案的开发,特别是对于高表面积微孔聚合物。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Relationships Between Defectivity and Porosity in High Surface Area Porous Aromatic Frameworks.
高表面积多孔芳香族骨架中的缺陷率和孔隙率之间的关系。
- DOI:10.1002/anie.202314120
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Porath,AnthonyJ;Lybrand,Tony;Bour,JamesR
- 通讯作者:Bour,JamesR
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James Bour其他文献
James Bour的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Kidney injury molecular(KIM-1)介导肾小管上皮细胞自噬在糖尿病肾病肾间质纤维化中的作用
- 批准号:81300605
- 批准年份:2013
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
Molecular Plant
- 批准号:31224801
- 批准年份:2012
- 资助金额:20.0 万元
- 项目类别:专项基金项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
- 批准号:31070748
- 批准年份:2010
- 资助金额:34.0 万元
- 项目类别:面上项目
Molecular Plant
- 批准号:31024802
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:专项基金项目
Cellular & Molecular Immunology
- 批准号:30824806
- 批准年份:2008
- 资助金额:20.0 万元
- 项目类别:专项基金项目
相似海外基金
Approaches to elucidate the molecular pathogenesis of oculopharyngodistal myopathy using single cell RNA sequencing
利用单细胞 RNA 测序阐明眼咽远端肌病分子发病机制的方法
- 批准号:
23K14782 - 财政年份:2023
- 资助金额:
$ 73.38万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Elucidating the molecular basis and expanding the biological applications of the glycosyltransferases using biochemical and structural biology approaches
利用生化和结构生物学方法阐明糖基转移酶的分子基础并扩展其生物学应用
- 批准号:
23K14138 - 财政年份:2023
- 资助金额:
$ 73.38万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
New approaches to understanding BK channelopathies at the molecular level of single channels
在单通道分子水平上了解 BK 通道病的新方法
- 批准号:
10639690 - 财政年份:2023
- 资助金额:
$ 73.38万 - 项目类别:
Community to Molecular Approaches in Early Screening and Diagnosis to Promote Equitable Outcomes Through the Continuum of Care in Cancer Among Populations of African Ancestry
社区采用分子方法进行早期筛查和诊断,通过对非洲裔人群癌症的持续护理来促进公平结果
- 批准号:
10754038 - 财政年份:2023
- 资助金额:
$ 73.38万 - 项目类别:
Statistical physics and network-based approaches for elucidating molecular biomarkers of COPD
阐明 COPD 分子生物标志物的统计物理学和基于网络的方法
- 批准号:
10559835 - 财政年份:2023
- 资助金额:
$ 73.38万 - 项目类别:
Development of a Protein-Cyclic Peptide Complex Structure Database and Advanced Molecular Design Approaches
蛋白质环肽复合结构数据库和先进分子设计方法的开发
- 批准号:
23H03496 - 财政年份:2023
- 资助金额:
$ 73.38万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Integrated multi-omics approaches to characterize the molecular genetic features of exceptional response to radiotherapy
综合多组学方法来表征放射治疗异常反应的分子遗传特征
- 批准号:
23K07221 - 财政年份:2023
- 资助金额:
$ 73.38万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Revisiting Wallach's Rule: Approaches toward singular point interplaying molecular symmetries and electronic properties
重温瓦拉赫法则:研究奇点相互作用的分子对称性和电子特性的方法
- 批准号:
22H00314 - 财政年份:2022
- 资助金额:
$ 73.38万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Molecular approaches in pre-clinical models to identify and validate biomarker signatures that predict treatment response in prostate cancer patients
临床前模型中的分子方法,用于识别和验证预测前列腺癌患者治疗反应的生物标志物特征
- 批准号:
2754541 - 财政年份:2022
- 资助金额:
$ 73.38万 - 项目类别:
Studentship
Combining innovative molecular adjuvanting approaches with novel adenoviral vector delivery to generate a universal influenza vaccine
将创新的分子佐剂方法与新型腺病毒载体递送相结合以产生通用流感疫苗
- 批准号:
10519005 - 财政年份:2022
- 资助金额:
$ 73.38万 - 项目类别: