CAREER: Block Polyelectrolyte Complexes for Controlled Mixed Ionic-Electronic Conduction

职业:用于受控混合离子电子传导的嵌段聚电解质复合物

基本信息

  • 批准号:
    2237888
  • 负责人:
  • 金额:
    $ 65.42万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-01 至 2028-06-30
  • 项目状态:
    未结题

项目摘要

This project is jointly funded by the DMR Polymers Program and the Established Program to Stimulate Competitive Research (EPSCoR). PART 1: NON-TECHNICAL SUMMARYThe use of electronic materials and devices at biological interfaces (i.e., bioelectronics) enables important applications in human health, such as for electrostimulation (e.g., to treat Parkinson’s or Alzheimer’s disease), biosensing, nerve/wound healing, and electrophysiological measurements. But, most common electronics in everyday devices are made of precious metal conductors, such as gold or platinum. These materials are not ideal for applications related to human health because they are too rigid and brittle. They also use electrons for communication instead of ions like biological systems do (e.g., neurons communicate through differences in ion concentration); this makes it difficult to “translate” electronic signals to ionic ones for stimulation, or vice versa for sensing. To address these problems, new materials are needed that are much softer, biocompatible, and enable the conduction of both electrons and ions. This research will introduce a new class of polymers that fit these criteria and have properties inspired from biology. These electron- and ion-conducting polymers will be synthesized, characterized and integrated in devices, to provide design rules to optimize the efficiency of electronic materials specifically made for bioelectronics applications. This research will therefore have an impact in both fundamental research on materials and applications in healthcare. It will also provide educational activities, hands-on demonstrations, and a mentoring program designed to broadly educate about the uses of polymeric materials and trigger and nurture interest in materials science and engineering. These educational, outreach, and research activities will actively engage graduate and undergraduate students to help develop their capabilities as interdisciplinary researchers, and thereby also increase the participation and retention of marginalized students.PART 2: TECHNICAL SUMMARYElectrically-conductive polymers that can also transport ions (i.e., organic mixed ionic-electronic conductors) could play a major role in the study and treatment of neurological disorders by acting as transducers between ionic and electronic signals. However, current methods to functionalize these materials for bioelectronic applications have been limited to blending with additives and to side-chain modification, which often decrease the electronic performance of the devices. The goal of the planned research is therefore to access organic mixed ionic-electronic conductors that maintain or improve their electronic performance upon functionalization with an electronically-insulating polymer. To achieve this goal, the complexation between neutral-anionic diblock copolymers and positively-charged conductive polymers (i.e., block polyelectrolyte complexes) will be leveraged to control the ordering of otherwise disordered mixed conductors, and ultimately tailor their properties for applications specific to bioelectronics. These block polyelectrolyte complexes will mimic key properties of biological systems while precisely controlling the relative contribution of ionic and electronic transport and ionic-electronic coupling. The research will focus on mimicking three biological properties: (1) specificity, (2) dynamic and adaptable properties, and (3) biodegradability. The results of this research will enable new functionalities for bioelectronic devices (e.g., ion-selective sensors, injectable and conductive tissue scaffolds, and transient devices), and contribute to the establishment of fundamental molecular design rules for high performance organic mixed ionic-electronic conductors. This research will also integrate educational activities for students and parents about the positive societal impact of functional plastics, in particular plastic electronics. A laboratory module will be developed to introduce junior undergraduate students to authentic research in organic electronics. The samples produced during this laboratory will be used in an outreach module on plastic electronics for K-12 students. This grant will also support the creation of a mentoring and support network for high school girls interested in pursuing a college degree in materials science and engineering.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目由DMR聚合物计划和刺激竞争研究的既定计划(EPSCoR)共同资助。第1部分:非技术总结在生物界面(即,生物电子学)能够在人类健康中实现重要的应用,例如用于电刺激(例如,治疗帕金森氏病或阿尔茨海默氏病)、生物传感、神经/伤口愈合和电生理测量。但是,日常设备中最常见的电子产品是由贵金属导体制成的,如黄金或铂。这些材料对于与人类健康相关的应用并不理想,因为它们太硬和脆。它们还使用电子而不是像生物系统那样使用离子进行通信(例如,神经元通过离子浓度的差异进行通信);这使得难以将电子信号“翻译”为离子信号以用于刺激,或者反之亦然以用于感测。为了解决这些问题,需要更柔软,生物相容性更好,并且能够传导电子和离子的新材料。这项研究将引入一类新的聚合物,它们符合这些标准,并具有受生物学启发的特性。这些电子和离子导电聚合物将被合成,表征和集成在设备中,以提供设计规则来优化专门用于生物电子应用的电子材料的效率。因此,这项研究将对材料的基础研究和医疗保健应用产生影响。 它还将提供教育活动,实践演示和指导计划,旨在广泛宣传聚合物材料的使用,并引发和培养对材料科学和工程的兴趣。这些教育、推广和研究活动将积极吸引研究生和本科生,以帮助发展他们作为跨学科研究人员的能力,从而也增加了边缘化学生的参与和保留。有机混合离子-电子导体)通过充当离子和电子信号之间的转换器,可以在神经系统疾病的研究和治疗中发挥重要作用。然而,目前将这些材料功能化用于生物电子应用的方法仅限于与添加剂共混和侧链改性,这通常会降低器件的电子性能。因此,计划研究的目标是获得有机混合离子-电子导体,这些导体在用电子绝缘聚合物官能化后保持或改善其电子性能。为了实现这一目标,中性-阴离子二嵌段共聚物和带正电荷的导电聚合物(即,嵌段络合物)将被用来控制否则无序的混合导体的有序化,并最终使它们的性质适合于生物电子学的特定应用。这些嵌段复合物将模拟生物系统的关键特性,同时精确控制离子和电子传输以及离子-电子耦合的相对贡献。该研究将重点模拟三种生物学特性:(1)特异性,(2)动态和适应性,以及(3)生物降解性。这项研究的结果将为生物电子设备提供新的功能(例如,离子选择性传感器、可注射和导电组织支架以及瞬态装置),并有助于建立用于高性能有机混合离子-电子导体的基本分子设计规则。 这项研究还将为学生和家长提供关于功能塑料,特别是塑料电子产品的积极社会影响的教育活动。将开发一个实验室模块,向低年级本科生介绍有机电子学的真实研究。该实验室生产的样品将用于K-12学生塑料电子产品的外展模块。这笔赠款还将支持为有兴趣攻读材料科学和工程大学学位的高中女生建立一个指导和支持网络。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Laure Kayser其他文献

Laure Kayser的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

安氏II类1分类伴下颌后缩生长发育期患者Twin Block矫治后上气道反应的流体动力学仿真模拟
  • 批准号:
    81571010
  • 批准年份:
    2015
  • 资助金额:
    57.0 万元
  • 项目类别:
    面上项目
Block 型无穷维李代数在Toda系统中的应用
  • 批准号:
    11201251
  • 批准年份:
    2012
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
应用常染色体单倍域(Haplotype Block)研究中国人群的遗传结构
  • 批准号:
    30571060
  • 批准年份:
    2005
  • 资助金额:
    22.0 万元
  • 项目类别:
    面上项目
客家人G6PD基因位点Haplotype Block的研究
  • 批准号:
    30470949
  • 批准年份:
    2004
  • 资助金额:
    18.0 万元
  • 项目类别:
    面上项目

相似海外基金

Open Access Block Award 2024 - Durham University
2024 年开放访问区块奖 - 杜伦大学
  • 批准号:
    EP/Z531480/1
  • 财政年份:
    2024
  • 资助金额:
    $ 65.42万
  • 项目类别:
    Research Grant
Open Access Block Award 2024 - Goldsmiths College
2024 年开放获取区块奖 - 金史密斯学院
  • 批准号:
    EP/Z531509/1
  • 财政年份:
    2024
  • 资助金额:
    $ 65.42万
  • 项目类别:
    Research Grant
Open Access Block Award 2024 - John Innes Centre
2024 年开放访问区块奖 - 约翰·英尼斯中心
  • 批准号:
    EP/Z53156X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 65.42万
  • 项目类别:
    Research Grant
Open Access Block Award 2024 - London School of Economics & Pol Sci
2024 年开放获取区块奖 - 伦敦政治经济学院
  • 批准号:
    EP/Z531625/1
  • 财政年份:
    2024
  • 资助金额:
    $ 65.42万
  • 项目类别:
    Research Grant
Open Access Block Award 2024 - Oxford Brookes University
2024 年开放获取区块奖 - 牛津布鲁克斯大学
  • 批准号:
    EP/Z531728/1
  • 财政年份:
    2024
  • 资助金额:
    $ 65.42万
  • 项目类别:
    Research Grant
Open Access Block Award 2024 - The Francis Crick Institute
2024 年开放获取区块奖 - 弗朗西斯·克里克研究所
  • 批准号:
    EP/Z531844/1
  • 财政年份:
    2024
  • 资助金额:
    $ 65.42万
  • 项目类别:
    Research Grant
Open Access Block Award 2024 - The Natural History Museum
2024 年开放访问区块奖 - 自然历史博物馆
  • 批准号:
    EP/Z531856/1
  • 财政年份:
    2024
  • 资助金额:
    $ 65.42万
  • 项目类别:
    Research Grant
Open Access Block Award 2024 - University of Brighton
2024 年开放获取区块奖 - 布莱顿大学
  • 批准号:
    EP/Z531935/1
  • 财政年份:
    2024
  • 资助金额:
    $ 65.42万
  • 项目类别:
    Research Grant
Open Access Block Award 2024 - University of Bristol
2024 年开放获取区块奖 - 布里斯托大学
  • 批准号:
    EP/Z531947/1
  • 财政年份:
    2024
  • 资助金额:
    $ 65.42万
  • 项目类别:
    Research Grant
Open Access Block Award 2024 - University of Bradford
2024 年开放获取区块奖 - 布拉德福德大学
  • 批准号:
    EP/Z531923/1
  • 财政年份:
    2024
  • 资助金额:
    $ 65.42万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了