CAREER: Block Polyelectrolyte Complexes for Controlled Mixed Ionic-Electronic Conduction
职业:用于受控混合离子电子传导的嵌段聚电解质复合物
基本信息
- 批准号:2237888
- 负责人:
- 金额:$ 65.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2028-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project is jointly funded by the DMR Polymers Program and the Established Program to Stimulate Competitive Research (EPSCoR). PART 1: NON-TECHNICAL SUMMARYThe use of electronic materials and devices at biological interfaces (i.e., bioelectronics) enables important applications in human health, such as for electrostimulation (e.g., to treat Parkinson’s or Alzheimer’s disease), biosensing, nerve/wound healing, and electrophysiological measurements. But, most common electronics in everyday devices are made of precious metal conductors, such as gold or platinum. These materials are not ideal for applications related to human health because they are too rigid and brittle. They also use electrons for communication instead of ions like biological systems do (e.g., neurons communicate through differences in ion concentration); this makes it difficult to “translate” electronic signals to ionic ones for stimulation, or vice versa for sensing. To address these problems, new materials are needed that are much softer, biocompatible, and enable the conduction of both electrons and ions. This research will introduce a new class of polymers that fit these criteria and have properties inspired from biology. These electron- and ion-conducting polymers will be synthesized, characterized and integrated in devices, to provide design rules to optimize the efficiency of electronic materials specifically made for bioelectronics applications. This research will therefore have an impact in both fundamental research on materials and applications in healthcare. It will also provide educational activities, hands-on demonstrations, and a mentoring program designed to broadly educate about the uses of polymeric materials and trigger and nurture interest in materials science and engineering. These educational, outreach, and research activities will actively engage graduate and undergraduate students to help develop their capabilities as interdisciplinary researchers, and thereby also increase the participation and retention of marginalized students.PART 2: TECHNICAL SUMMARYElectrically-conductive polymers that can also transport ions (i.e., organic mixed ionic-electronic conductors) could play a major role in the study and treatment of neurological disorders by acting as transducers between ionic and electronic signals. However, current methods to functionalize these materials for bioelectronic applications have been limited to blending with additives and to side-chain modification, which often decrease the electronic performance of the devices. The goal of the planned research is therefore to access organic mixed ionic-electronic conductors that maintain or improve their electronic performance upon functionalization with an electronically-insulating polymer. To achieve this goal, the complexation between neutral-anionic diblock copolymers and positively-charged conductive polymers (i.e., block polyelectrolyte complexes) will be leveraged to control the ordering of otherwise disordered mixed conductors, and ultimately tailor their properties for applications specific to bioelectronics. These block polyelectrolyte complexes will mimic key properties of biological systems while precisely controlling the relative contribution of ionic and electronic transport and ionic-electronic coupling. The research will focus on mimicking three biological properties: (1) specificity, (2) dynamic and adaptable properties, and (3) biodegradability. The results of this research will enable new functionalities for bioelectronic devices (e.g., ion-selective sensors, injectable and conductive tissue scaffolds, and transient devices), and contribute to the establishment of fundamental molecular design rules for high performance organic mixed ionic-electronic conductors. This research will also integrate educational activities for students and parents about the positive societal impact of functional plastics, in particular plastic electronics. A laboratory module will be developed to introduce junior undergraduate students to authentic research in organic electronics. The samples produced during this laboratory will be used in an outreach module on plastic electronics for K-12 students. This grant will also support the creation of a mentoring and support network for high school girls interested in pursuing a college degree in materials science and engineering.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目由DMR聚合物计划和启发竞争研究的既定计划共同资助。第1部分:非技术总结在生物界面(即生物电子学)在生物界面上使用电子材料和设备的使用可以在人类健康中进行重要应用,例如用于电刺激(例如,治疗帕金森氏症或阿尔茨海默氏病),生物体/受伤,NERVER/NERVER/NERVER/EXPENSING,NERVER/EXPENSING,NERVER/EXPERING,和电子生理学测量值。但是,每天设备中最常见的电子设备是由金或铂等贵金属导体制成的。这些材料对于与人类健康有关的应用不是理想的选择,因为它们太僵硬又脆。他们还使用电子进行通信,而不是像生物系统这样的离子(例如,神经元通过离子浓度的差异进行通信);这使得很难将电子信号“转换”到离子信号以进行刺激,反之亦然。为了解决这些问题,需要新材料柔软,生物相容性,并使电子和离子都能传导。这项研究将引入一类新的聚合物,这些聚合物符合这些标准并具有受生物学启发的特性。这些电子和离子传导聚合物将被合成,表征和集成在设备中,以提供设计规则,以优化专门针对生物电子应用程序的电子材料的效率。因此,这项研究将对医疗保健材料和应用的基本研究产生影响。它还将提供教育活动,动手演示以及旨在广泛教育聚合物材料以及触发和护士对材料科学和工程的兴趣的心理计划。这些教育,宣传和研究活动将积极参与研究生和本科生,以帮助发展他们作为跨学科研究人员的能力,从而增加了边缘化学生的参与和保留。第2部分:技术摘要的电导性聚合物,可以通过有机混合型培训和播放的角色及时播放,这些作用是有机的,以及扮演的角色及其研究,以及时播放的角色扮演的角色,以及一项促进了一项运动,该作用是一项促进的作用,而不是扮演组合的多个角色,并且会在主要的锻炼中进行研究,以促进效果和研究人员的作用。作为离子和电子信号之间的传感器。但是,当前将这些材料用于生物电子应用功能的方法仅限于与添加剂和侧链修饰融合,这通常会降低设备的电子性能。因此,计划研究的目的是访问有机混合离子电子导体,以通过电子构造的聚合物功能化来维持或改善其电子性能。为了实现这一目标,将利用中性序二嵌段共聚物与带正电荷的导电聚合物(即块聚电解质配合物)之间的络合物,以控制原本无序的混合导体的订购,并最终定制其特定于生物电子的应用程序。这些块聚电解质复合物将模仿生物系统的关键特性,同时精确控制离子和电子传输以及离子电子耦合的相对贡献。该研究将重点放在模仿三种生物学特性上:(1)特异性,(2)动态和适应性的特性,以及(3)生物降解性。这项研究的结果将使生物电子设备(例如,离子选择传感器,可注射和导电组织支架和瞬态设备)的新功能,并有助于建立高性能有机混合电离混合电离电气电气电量的基本分子设计规则。这项研究还将为学生和父母整合有关功能塑料的积极社会影响,尤其是塑料电子产品的积极影响。将开发一个实验室模块,将初级本科生介绍到有机电子的真实研究中。该实验室期间生产的样品将用于K-12学生的塑料电子外展模块中。该赠款还将支持为有兴趣攻读材料科学和工程大学学位的高中女生创建一个心理和支持网络。该奖项反映了NSF的法定任务,并通过使用基金会的知识分子和更广泛的影响评估标准来评估诚实的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Laure Kayser其他文献
Laure Kayser的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
深井高温环境下井筒耐磨铸铁堵塞物破碎机理与修井磨鞋磨损机制
- 批准号:52304015
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
燃料样品辐照流道堵塞事故演化机理及全堆响应研究
- 批准号:12375178
- 批准年份:2023
- 资助金额:52.00 万元
- 项目类别:面上项目
滴灌用劣质水泵前微压过滤器物理-生物堵塞特性及诱发机制研究
- 批准号:52369013
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
透水铺装下垫面颗粒物累积堵塞全过程演化规律、冲刷迁移作用机制和雨水径流污染负荷评估方法
- 批准号:52370092
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
失速工况下固液混输泵“哮喘式”堵塞效应生成机制的研究
- 批准号:52309112
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Open Access Block Award 2024 - Durham University
2024 年开放访问区块奖 - 杜伦大学
- 批准号:
EP/Z531480/1 - 财政年份:2024
- 资助金额:
$ 65.42万 - 项目类别:
Research Grant
Open Access Block Award 2024 - Goldsmiths College
2024 年开放获取区块奖 - 金史密斯学院
- 批准号:
EP/Z531509/1 - 财政年份:2024
- 资助金额:
$ 65.42万 - 项目类别:
Research Grant
Open Access Block Award 2024 - John Innes Centre
2024 年开放访问区块奖 - 约翰·英尼斯中心
- 批准号:
EP/Z53156X/1 - 财政年份:2024
- 资助金额:
$ 65.42万 - 项目类别:
Research Grant
Open Access Block Award 2024 - London School of Economics & Pol Sci
2024 年开放获取区块奖 - 伦敦政治经济学院
- 批准号:
EP/Z531625/1 - 财政年份:2024
- 资助金额:
$ 65.42万 - 项目类别:
Research Grant
Open Access Block Award 2024 - Oxford Brookes University
2024 年开放获取区块奖 - 牛津布鲁克斯大学
- 批准号:
EP/Z531728/1 - 财政年份:2024
- 资助金额:
$ 65.42万 - 项目类别:
Research Grant