CAREER: Prioritizing the Development of Team Cognition in Human-AI Teams to Engender the Advancement and Acceptance of AI Teammates

职业生涯:优先发展人类-人工智能团队的团队认知,以促进人工智能队友的进步和接受

基本信息

  • 批准号:
    2237920
  • 负责人:
  • 金额:
    $ 58.02万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-15 至 2028-06-30
  • 项目状态:
    未结题

项目摘要

Teamwork is a long-standing foundation of modern society, used to accomplish many important and meaningful societal contributions. As artificial intelligence (AI) continues to progress, it will be used to form teams with human collaborators. Effective teamwork requires sharing knowledge and information so teammates share understanding of how to accomplish goals. Currently, AI agents prioritize simple task completion and have little to no conceptualization of what teamwork and team cognition is or what being a good teammate entails. To ensure that humans and AI are able to work together safely, research that seeks to understand what humans want and need from an AI teammate is needed. Furthermore, work is needed to design and develop AI teammates that intentionally and positively contribute to human-AI team cognition. This project provides a comprehensive exploration of how AI can be designed, created, and implemented into human-AI teams to advance team cognition. The project will result in AI systems that enable effective teaming with people. The knowledge gained about effective human-AI teaming through advancing team cognition will improve human acceptance of AI teammates and increase human enthusiasm for working with AI.The technical goals of this project are divided into three related aims. First, interviews with real-world workers, followed by a large-scale survey experiment, are used to identify ways that humans want AI to contribute to and benefit team cognition. Second, participatory design is used to ensure that AI teammates actively promote team cognition. during human-AI team. These designs are then tested, validated, and refined in a mixed methods experiment (collecting and analyzing quantitative and qualitative data). Finally, an additional mixed methods experiment links AI teammate design, human-AI team cognition formation, and human acceptance of AI teammates to better understand humans' acceptance of AI teammates. This work is then extended and applied through collaborations with academic and industry institutions. The results of this research will be continually integrated into educational opportunities to promote human-centered perspectives in next-generation AI practitioners and researchers. The three aims tackled by this research create a human-centered foundation for creating team cognition in human-AI teams, and for designing teammates that more effectively contribute to teaming processes and outcomes. This foundation includes the identification of how humans want AI teammates to benefit team cognition, the actions AI teammates can take to create said benefit, and how that realized benefit creates high-performance human-AI teams and highly accepted AI teammates. The outcomes will contribute concepts and design principles for human-AI teaming, team cognition, and human-centered AI.This project is jointly funded by CISE-IIS, and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
团队合作是现代社会的长期基础,用于完成许多重要和有意义的社会贡献。随着人工智能(AI)的不断进步,它将用于与人类合作者组建团队。有效的团队合作需要分享知识和信息,这样团队成员就可以分享如何实现目标的理解。目前,人工智能代理优先考虑简单的任务完成,并且几乎没有概念化团队合作和团队认知是什么,或者成为一个好的队友需要什么。为了确保人类和人工智能能够安全地一起工作,需要进行研究,以了解人类对人工智能队友的需求。此外,还需要设计和开发人工智能队友,有意识地积极促进人类-人工智能团队的认知。该项目提供了一个全面的探索如何设计,创建和实施人工智能到人类人工智能团队,以提高团队认知。该项目将产生能够与人有效合作的人工智能系统。通过提高团队认知获得的关于有效的人类-人工智能团队合作的知识将提高人类对人工智能队友的接受程度,并增加人类与人工智能合作的热情。首先,对现实世界的工作人员进行采访,然后进行大规模的调查实验,以确定人类希望人工智能为团队认知做出贡献和受益的方式。其次,采用参与式设计,确保AI队友积极推动团队认知。在人类和人工智能团队中。然后,这些设计在混合方法实验(收集和分析定量和定性数据)中进行测试,验证和改进。最后,一个额外的混合方法实验将AI队友设计、人类-AI团队认知形成和人类对AI队友的接受联系起来,以更好地了解人类对AI队友的接受程度。这项工作然后通过与学术和工业机构的合作得到扩展和应用。这项研究的结果将不断融入教育机会,以促进下一代人工智能从业者和研究人员以人为本的观点。本研究解决的三个目标为在人类-人工智能团队中创建团队认知以及设计更有效地为团队协作过程和结果做出贡献的队友奠定了以人为本的基础。这一基础包括确定人类如何希望AI队友有利于团队认知,AI队友可以采取哪些行动来创造这种好处,以及这种实现的好处如何创造高性能的人类AI团队和高度接受的AI队友。该项目由CISE-IIS和刺激竞争研究的既定计划(EPSCoR)共同资助。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nathan McNeese其他文献

Nathan McNeese的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Gender Gap in Sub-Sahara African Agriculture: A Decomposition Approach for Prioritizing Interventions
撒哈拉以南非洲农业中的性别差距:优先干预措施的分解方法
  • 批准号:
    24K17971
  • 财政年份:
    2024
  • 资助金额:
    $ 58.02万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Prioritizing Data Life Cycle Management for Shaping Next Generation Researchers
优先考虑数据生命周期管理以塑造下一代研究人员
  • 批准号:
    2236241
  • 财政年份:
    2023
  • 资助金额:
    $ 58.02万
  • 项目类别:
    Standard Grant
A national approach to prioritizing emerging research questions in COVID-19 in transplantation
优先考虑移植中 COVID-19 新兴研究问题的国家方法
  • 批准号:
    480813
  • 财政年份:
    2023
  • 资助金额:
    $ 58.02万
  • 项目类别:
    Miscellaneous Programs
A National Approach to Prioritizing Emerging Issues in COVID-19 in Transplantation
优先考虑移植中新出现的 COVID-19 问题的国家方法
  • 批准号:
    495275
  • 财政年份:
    2023
  • 资助金额:
    $ 58.02万
  • 项目类别:
Prioritizing diversity in polygenic risk prediction of primary open-angle glaucoma
原发性开角型青光眼多基因风险预测中优先考虑多样性
  • 批准号:
    10813253
  • 财政年份:
    2022
  • 资助金额:
    $ 58.02万
  • 项目类别:
A predictive model for identifying dangerous cycling intersections and prioritizing interventions in Montréal.
用于识别蒙特利尔危险的自行车路口并优先考虑干预措施的预测模型。
  • 批准号:
    572788-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 58.02万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Prioritizing autoimmune-associated genetic variants that alter regulatory element activity in B cells
优先考虑改变 B 细胞调节元件活性的自身免疫相关遗传变异
  • 批准号:
    10433200
  • 财政年份:
    2022
  • 资助金额:
    $ 58.02万
  • 项目类别:
Prioritizing Clinical Candidates for Motor Recovery in Multiple Sclerosis
优先考虑多发性硬化症运动恢复的临床候选者
  • 批准号:
    475365
  • 财政年份:
    2022
  • 资助金额:
    $ 58.02万
  • 项目类别:
    Studentship Programs
Prioritizing resources for conserving biodiversity in Canada
优先考虑保护加拿大生物多样性的资源
  • 批准号:
    558292-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 58.02万
  • 项目类别:
    Alliance Grants
Assessing, generating, and prioritizing tests for asynchronous JavaScript programs
评估、生成异步 JavaScript 程序的测试并确定其优先级
  • 批准号:
    RGPIN-2021-03688
  • 财政年份:
    2022
  • 资助金额:
    $ 58.02万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了