CAREER: Manipulating Photon Energy by Perovskite-Sensitized Solid-State Upconversion
职业:通过钙钛矿敏化固态上转换操纵光子能量
基本信息
- 批准号:2237977
- 负责人:
- 金额:$ 59.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2028-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Nontechnical DescriptionSolar energy is crucial to continue to meet the energy demands of today’s society. One pathway toward increasing the performance of solar cells is to increase the portion of sunlight that can be used to generate electricity. Much of the sun’s light is wasted because it consists of low-energy photons which are not absorbed by the semiconductors used to make solar cells. Low energy photons can be made usable by transforming them into higher energy photons through a process called upconversion. For example, two low-energy infrared photons can be converted into a higher-energy visible photon. This project will use a combination of organic molecules known to enable the upconversion process and metal halide perovskites, which are currently being investigated for use in solar cells. The perovskite will be used to absorb the low energy light and excite the organic molecules. Upon successful upconversion, higher energy light can then be absorbed for use in a solar cell. A combination of optical techniques and microscopy will lead to a detailed understanding of the underlying processes. Beyond the scientific impact of this project, a goal is to guide students to further pursue a scientific career and inspire their independent research, critical thinking, and creative problem-solving capabilities by strong mentorship in undergraduate research and education. This activity aims to inspire a new generation of scientists. To close the growing rift between scientists and the non-scientific community, a strong foundation linking the PI’s institution with the local community will be built by outreach lectures and science communication (‘Kitchen Chemistry’ or ‘Kitchen Spectroscopy’) via local TV and social media outlets.Technical DescriptionEfficient interconversion of solar energy to chemical or electrical energy is the key to meeting the future energy demands of our society. Improved photon utilization through an upconversion process involving triplet generation at the perovskite/organic semiconductor interface is a very promising approach to increase the photoexcited state lifetime and therefore, overall device efficiencies. The principal investigator will explore perovskite-sensitized solid-state upconversion via triplet-triplet annihilation to unravel the role of microscale and nanoscale molecular arrangement in OSCs. A combination of optical spectroscopy and scanning probe microscopy will be employed to elucidate the local optoelectronic properties originating from specific molecular arrangements of polyacenes on perovskite substrates. Control over orbital coupling by molecular placement will allow the involved steps to be systematically evaluated. The main goal is to understand why commonly utilized annihilators which exhibit high efficiencies in solution (e.g., diphenylanthracene) do not yield transferable results in the solid state, and how aggregation effects can be harnessed or avoided to improve solid-state upconversion yields. To achieve this goal, new perovskite/triplet acceptor pairs will be developed to investigate why promising solution-based triplet annihilators perform poorly in the solid state. The effect of local intermolecular interactions on the upconversion process will be studied on the microscale and the nanoscale using optical scanning probe microscopy and time-resolved optical spectroscopy. The combination of characterization methods spanning from the ensemble to the atomic scale will reveal the local structure-property relationships governing the bulk optoelectronic properties of hybrid perovskite/OSC-based TTA upconversion.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述太阳能对于继续满足当今社会的能源需求至关重要。提高太阳能电池性能的一种途径是增加可用于发电的阳光部分。大部分太阳光都被浪费了,因为它由低能光子组成,这些光子不会被用于制造太阳能电池的半导体吸收。通过上转换过程将低能光子转化为高能光子,从而使低能光子变得可用。例如,两个低能量红外光子可以转换成一个较高能量的可见光子。该项目将使用已知能够实现上转换过程的有机分子和金属卤化物钙钛矿的组合,目前正在研究将其用于太阳能电池。钙钛矿将用于吸收低能光并激发有机分子。成功上转换后,可以吸收更高能量的光以用于太阳能电池。光学技术和显微镜的结合将有助于详细了解底层过程。除了该项目的科学影响之外,其目标还在于通过对本科生研究和教育的强有力指导,引导学生进一步追求科学事业,激发他们的独立研究、批判性思维和创造性解决问题的能力。这项活动旨在激励新一代科学家。为了弥合科学家和非科学界之间日益扩大的裂痕,将通过当地电视和社交媒体渠道进行外展讲座和科学传播(“厨房化学”或“厨房光谱学”),为将 PI 机构与当地社区联系起来奠定坚实的基础。技术说明太阳能与化学能或电能的有效相互转换是满足我们社会未来能源需求的关键。通过涉及钙钛矿/有机半导体界面三线态生成的上转换过程来提高光子利用率是一种非常有前途的方法,可以提高光激发态寿命,从而提高整体器件效率。主要研究人员将通过三重态-三重态湮灭探索钙钛矿敏化固态上转换,以揭示微米级和纳米级分子排列在 OSC 中的作用。将采用光谱学和扫描探针显微镜的组合来阐明钙钛矿基板上多并苯的特定分子排列所产生的局部光电特性。通过分子放置控制轨道耦合将允许系统地评估所涉及的步骤。主要目标是了解为什么在溶液中表现出高效率的常用消灭剂(例如二苯基蒽)在固态下无法产生可转移的结果,以及如何利用或避免聚集效应来提高固态上转换产率。为了实现这一目标,将开发新的钙钛矿/三重态受体对,以研究为什么有前途的基于溶液的三重态湮灭器在固态下表现不佳。将使用光学扫描探针显微镜和时间分辨光谱在微米尺度和纳米尺度上研究局部分子间相互作用对上转换过程的影响。从系综到原子尺度的表征方法的组合将揭示控制基于混合钙钛矿/OSC的TTA上转换的体光电特性的局域结构-特性关系。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Cool carriers: triplet diffusion dominates upconversion yield
冷载流子:三线态扩散主导上转换产率
- DOI:10.1039/d3nr04446g
- 发表时间:2023
- 期刊:
- 影响因子:6.7
- 作者:Sullivan, Colette M.;Kuszynski, Jason E.;Kovalev, Alexey;Siegrist, Theo;Schaller, Richard D.;Strouse, Geoffrey F.;Nienhaus, Lea
- 通讯作者:Nienhaus, Lea
Turning on TTA: Tuning the Energy Landscape by Intermolecular Coupling
- DOI:10.1021/acs.chemmater.3c02349
- 发表时间:2023-12
- 期刊:
- 影响因子:8.6
- 作者:Colette M. Sullivan;L. Nienhaus
- 通讯作者:Colette M. Sullivan;L. Nienhaus
The magnet: With more power comes more annihilation
磁铁:力量越大,毁灭就越多
- DOI:10.1016/j.matt.2023.06.026
- 发表时间:2023
- 期刊:
- 影响因子:18.9
- 作者:Sullivan, Colette M.;Nienhaus, Lea
- 通讯作者:Nienhaus, Lea
Upconversion at Solid/Liquid Interfaces Using Perovskite Single Crystal Triplet Sensitizers
- DOI:10.1021/acs.chemmater.3c02778
- 发表时间:2024-02-06
- 期刊:
- 影响因子:8.6
- 作者:Moller,Gregory;Sullivan,Colette M.;Nienhaus,Lea
- 通讯作者:Nienhaus,Lea
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lea Nienhaus其他文献
Bulky cation hinders undesired secondary phases in FAPbIsub3/sub perovskite solar cells
大体积阳离子阻碍了 FAPbI₃钙钛矿太阳能电池中不需要的次级相
- DOI:
10.1016/j.mattod.2023.06.010 - 发表时间:
2023-09-01 - 期刊:
- 影响因子:22.000
- 作者:
Juanita Hidalgo;Lahoucine Atourki;Ruipeng Li;Andrés-Felipe Castro-Méndez;Sanggyun Kim;Emmet A. Sherman;Alexander S. Bieber;Meng-ju Sher;Lea Nienhaus;Carlo A.R. Perini;Juan-Pablo Correa-Baena - 通讯作者:
Juan-Pablo Correa-Baena
Lea Nienhaus的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Manipulating light from a single photon to complex beams and wave packets, and their novel applications.
操纵光从单个光子到复杂的光束和波包,及其新颖的应用。
- 批准号:
RGPIN-2014-06093 - 财政年份:2018
- 资助金额:
$ 59.45万 - 项目类别:
Discovery Grants Program - Individual
Manipulating light from a single photon to complex beams and wave packets, and their novel applications.
操纵光从单个光子到复杂的光束和波包,及其新颖的应用。
- 批准号:
RGPIN-2014-06093 - 财政年份:2017
- 资助金额:
$ 59.45万 - 项目类别:
Discovery Grants Program - Individual
Manipulating light from a single photon to complex beams and wave packets, and their novel applications.
操纵光从单个光子到复杂的光束和波包,及其新颖的应用。
- 批准号:
RGPIN-2014-06093 - 财政年份:2016
- 资助金额:
$ 59.45万 - 项目类别:
Discovery Grants Program - Individual
Manipulating hippocampal CA3 attractor dynamics with targeted 2 photon ("P) activation in vivo)
通过体内目标 2 光子 (“P” 激活) 操纵海马 CA3 吸引子动力学
- 批准号:
1765000 - 财政年份:2016
- 资助金额:
$ 59.45万 - 项目类别:
Studentship
Manipulating light from a single photon to complex beams and wave packets, and their novel applications.
操纵光从单个光子到复杂的光束和波包,及其新颖的应用。
- 批准号:
462548-2014 - 财政年份:2016
- 资助金额:
$ 59.45万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Manipulating light from a single photon to complex beams and wave packets, and their novel applications.
操纵光从单个光子到复杂的光束和波包,及其新颖的应用。
- 批准号:
RGPIN-2014-06093 - 财政年份:2015
- 资助金额:
$ 59.45万 - 项目类别:
Discovery Grants Program - Individual
Manipulating light from a single photon to complex beams and wave packets, and their novel applications.
操纵光从单个光子到复杂的光束和波包,及其新颖的应用。
- 批准号:
462548-2014 - 财政年份:2015
- 资助金额:
$ 59.45万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Manipulating light from a single photon to complex beams and wave packets, and their novel applications.
操纵光从单个光子到复杂的光束和波包,及其新颖的应用。
- 批准号:
462548-2014 - 财政年份:2014
- 资助金额:
$ 59.45万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Manipulating light from a single photon to complex beams and wave packets, and their novel applications.
操纵光从单个光子到复杂的光束和波包,及其新颖的应用。
- 批准号:
RGPIN-2014-06093 - 财政年份:2014
- 资助金额:
$ 59.45万 - 项目类别:
Discovery Grants Program - Individual
Manipulating photon-atom interactions with atomic coherence and interference
利用原子相干性和干涉来操纵光子与原子的相互作用
- 批准号:
0757984 - 财政年份:2008
- 资助金额:
$ 59.45万 - 项目类别:
Continuing Grant














{{item.name}}会员




