CAREER: A Framework for Co-design and Optimization of Programmable Hardware Accelerators and Compilers

职业:可编程硬件加速器和编译器协同设计和优化的框架

基本信息

  • 批准号:
    2238006
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-03-15 至 2028-02-29
  • 项目状态:
    未结题

项目摘要

Creating energy-efficient computing systems is essential for achieving the societal goal of sustainability. As the semiconductor technology scaling predicted by Moore’s law slows down, domain-specific hardware accelerators, i.e., hardware blocks specialized to do certain tasks very well, will play an increasingly important role in improving the performance and energy-efficiency of computing systems. Modern mobile chips have dozens of accelerators for applications such as image processing, video coding, graphics, neural networks etc. to achieve low power consumption and fast processing speeds. However, with advances in machine learning, these applications are changing at a rapid pace. Maintaining high performance and energy-efficiency requires that hardware accelerators, compilers, and applications evolve together in lockstep. Unfortunately, existing methodologies to achieve this involve significant manual effort. Large engineering teams study the accelerator architecture in detail and modify the compiler in an ad hoc manner, leveraging low-level libraries to target specific hardware features. Because of the large overhead in maintaining the software stack, it remains challenging to accelerate new domains or existing domains as they evolve. What is needed is a structured approach for generating programmable accelerators and for updating the software compiler as the accelerator architecture evolves with the applications. This project proposes a design-space exploration and optimization framework that automatically generates accelerator architectures that approach the efficiencies of hand-designed ones, with a significantly lower design effort for both hardware and compiler generation. This work can impact how hardware-software system design is done today in the industry, by reducing the time to market for products and creating more productive design teams. Moreover, the openly shared curriculum developed as a part of this work will ensure equitable access to educational opportunities and help create a diverse, globally competitive semiconductor workforce. The research goal of this project is to create a framework for automated co-design and optimization of domain-specific hardware accelerators and compilers. The framework will have three components: (1) an automated accelerator processing element (PE) design space optimization tool based on frequent subgraph mining and merging, (2) an accelerator memory element optimization tool for both dense and sparse applications, and (3) an auto-scheduler for automatically determining the best mapping of an application to the accelerator. These tools will be used to design, optimize and prototype in silicon a unified programmable accelerator for both dense application domains such as image processing and machine learning and sparse application domains such as graph analytics, and demonstrate energy-efficiency and performance metrics that significantly beat general purpose architectures and approach application-specific integrated circuits. The proposed approach uses several techniques, distinct from prior work, to achieve automatic accelerator-compiler co-design and optimization. First, it allows any change in the hardware specification to automatically propagate into the compiler with no manual effort. This unique property is the key to enabling large-scale design space exploration of accelerators. Without it, one would have to manually update the application compiler with every hardware change, greatly limiting the number of design points one can explore. Second, the proposed framework for automated PE optimization for accelerators generates efficient PE architectures from the application graphs themselves, using frequent subgraph mining and merging. This approach is quite different from prior work, which does not perform application-driven optimization but rather searches over many possible PE parameter values. As a result, this approach promises to be much more sample-efficient and faster versus prior work. Finally, as opposed to existing commercial high level synthesis tools and compilers for programmable accelerators which require the user to provide low-level scheduling directives in the application code, the auto-scheduler proposed will automatically search for the best mapping of an application to the programmable accelerator, greatly improving user productivity.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
建立节能计算系统对于实现可持续性的社会目标至关重要。随着摩尔定律预测的半导体技术扩展,特定领域的硬件加速器,即专门完成某些任务的硬件块,将在改善计算系统的性能和能源效率方面发挥越来越重要的作用。现代移动芯片具有数十个加速器,用于图像处理,视频编码,图形,神经网络等,以实现低功耗和快速处理速度。但是,随着机器学习的进步,这些应用程序正在快速变化。保持高性能和能源效率要求硬件加速器,编译器和应用程序锁定在一起。不幸的是,实现这一目标的现有方法涉及大量的手动努力。大型工程团队会详细研究加速器体系结构,并以临时的方式修改编译器,并利用低级库来针对特定的硬件功能。由于维护软件堆栈的开销很大,因此随着新的域或现有域的发展,加速新域或现有域仍然是挑战。所需的是一种结构化方法,用于生成可编程加速器,并随着应用程序架构随着应用程序的发展而更新软件编译器。该项目提出了一个设计空间探索和优化框架,该框架自动生成加速器体系结构,该架构接近手工设计的效率,并为硬件和编译器生成而设计工作较低。这项工作可以通过减少推销产品市场并创建更有生产力的设计团队来影响当今行业的硬件软件系统设计。此外,作为这项工作的一部分开发的公开共享的课程将确保公平获得教育机会,并帮助创造多样性,具有全球竞争性的半导体劳动力。该项目的研究目标是为特定领域的硬件加速器和编译器的自动共设计和优化创建一个框架。该框架将具有三个组件:(1)基于经常子图挖掘和合并的自动加速器处理元件(PE)设计空间优化工具,(2)用于密集和稀疏应用程序的加速器内存元件优化工具,(3)自动助理器以自动确定应用程序的最佳映射。这些工具将用于在硅中设计,优化和原型,用于统一的可编程加速器,用于诸如图像处理和机器学习以及稀疏应用程序域(例如Graph Analytics)等统一的可编程加速器,并展示了能源效率和性能指标,这些指标可显着击败一般目的体系结构和方法应用程序型应用程序特异性集成的通用环境。所提出的方法使用几种与先前工作不同的技术来实现自动加速器 - 兼职器共同设计和优化。首先,它允许硬件规范中的任何更改可以在不手动努力的情况下自动传播到编译器中。这种独特的属性是实现大规模设计空间探索加速器的关键。没有它,就必须在每个硬件更改中手动更新应用程序编译器,从而极大地限制了可以探索的设计点的数量。其次,用于加速器的自动PE优化的拟议框架使用经常的子图挖掘和合并,从应用程序图本身中生成有效的PE架构。这种方法与先前的工作完全不同,后者不执行应用程序驱动的优化,而是在许多可能的PE参数值上进行搜索。结果,与先前的工作相比,这种方法有望更具样本效率和更快的速度。 Finally, as opposed to existing commercial high level synthesis tools and compilers for programmable accelerators which require the user to provide low-level scheduling directives in the application code, the auto-scheduler proposed will automatically search for the best mapping of an application to the programmable accelerator, great improving user productivity.This award reflects NSF's statutory mission and has been deemed precious of support through evaluation using the Foundation's intellectual优点和更广泛的影响审查标准。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Canal: A Flexible Interconnect Generator for Coarse-Grained Reconfigurable Arrays
Canal:用于粗粒度可重构阵列的灵活互连生成器
  • DOI:
    10.1109/lca.2023.3268126
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    Melchert, Jackson;Zhang, Keyi;Mei, Yuchen;Horowitz, Mark;Torng, Christopher;Raina, Priyanka
  • 通讯作者:
    Raina, Priyanka
Amber: A 16-nm System-on-Chip With a Coarse- Grained Reconfigurable Array for Flexible Acceleration of Dense Linear Algebra
  • DOI:
    10.1109/jssc.2023.3313116
  • 发表时间:
    2024-03
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Kathleen Feng;Taeyoung Kong;Kalhan Koul;J. Melchert;Alex Carsello;Qiaoyi Liu;Gedeon Nyengele;Maxwell Strange;Kecheng Zhang;Ankita Nayak;Jeff Setter;James J. Thomas;Kavya Sreedhar;Po-Han Chen;Nikhil Bhagdikar;Zachary Myers;Brandon D'Agostino;Pranil Joshi;Stephen Richardson;Christopher Torng;Mark Horowitz;Priyanka Raina
  • 通讯作者:
    Kathleen Feng;Taeyoung Kong;Kalhan Koul;J. Melchert;Alex Carsello;Qiaoyi Liu;Gedeon Nyengele;Maxwell Strange;Kecheng Zhang;Ankita Nayak;Jeff Setter;James J. Thomas;Kavya Sreedhar;Po-Han Chen;Nikhil Bhagdikar;Zachary Myers;Brandon D'Agostino;Pranil Joshi;Stephen Richardson;Christopher Torng;Mark Horowitz;Priyanka Raina
APEX: A Framework for Automated Processing Element Design Space Exploration using Frequent Subgraph Analysis
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Priyanka Raina其他文献

Association of Genetic Variants of ELMO1 Gene With Diabetic Nephropathy in the North Indian Population
ELMO1 基因遗传变异与北印度人群糖尿病肾病的关联
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gurvinder Singh;Rubina Sharma;Priyanka Raina;V. Kalotra;H. S. Sandhu;Itty Sethi;Varun Sharma;R. Sikka;K. Matharoo;J. Sokhi;A. Marwaha;V. Vig;R. Kapoor;M. Choudhary;Virinder Singh;Sapna Soneja;Swarkar Sharma;A. Bhanwer
  • 通讯作者:
    A. Bhanwer
Association of Transforming Growth Factor Beta-1 (TGF-β1) Genetic Variation with Type 2 Diabetes and End Stage Renal Disease in Two Large Population Samples from North India.
印度北部两个大型人群样本中转化生长因子 Beta-1 (TGF-β1) 遗传变异与 2 型糖尿病和终末期肾病的关联。
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Priyanka Raina;R. Sikka;R. Kaur;J. Sokhi;K. Matharoo;Virinder Singh;A. Bhanwer
  • 通讯作者:
    A. Bhanwer
Architectures for computational photography
计算摄影的架构
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Priyanka Raina
  • 通讯作者:
    Priyanka Raina
Ultra-Dense 3D Physical Design Unlocks New Architectural Design Points with Large Benefits
超密集 3D 物理设计解锁新的建筑设计点并带来巨大优势
Creating an Agile Hardware Design Flow
创建敏捷的硬件设计流程
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rick Bahr;Clark W. Barrett;Nikhil Bhagdikar;Alex Carsello;Ross G. Daly;Caleb Donovick;David Durst;Kayvon Fatahalian;Kathleen Feng;P. Hanrahan;Teguh Hofstee;M. Horowitz;Dillon Huff;Fredrik Kjolstad;Taeyoung Kong;Qiaoyi Liu;Makai Mann;J. Melchert;Ankita Nayak;Aina Niemetz;Gedeon Nyengele;Priyanka Raina;Stephen Richardson;Rajsekhar Setaluri;Jeff Setter;Kavya Sreedhar;Maxwell Strange;James J. Thomas;Christopher Torng;Lenny Truong;Nestan Tsiskaridze;Keyi Zhang
  • 通讯作者:
    Keyi Zhang

Priyanka Raina的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

卟啉基共价有机框架-氧化钨Z型光催化体系的设计及其还原CO2研究
  • 批准号:
    22302008
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
共价有机框架限域接枝离子液体的结构调控及氢键协同捕集CO的研究
  • 批准号:
    22378353
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
Cu/卟啉基自由基型共价有机框架协同串联电催化CO2还原制备C3化合物研究
  • 批准号:
    22305110
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
共价三嗪框架/氧化物异质结构界面间的化学键合及其光催化CO2还原性能研究
  • 批准号:
    22305133
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
多酸促进电荷转移—构建簇基卟啉框架电催化还原CO2晶态催化剂
  • 批准号:
    22371244
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: A Networking and Learning Co-Design Framework for Data-Efficient Resource Management
职业:用于数据高效资源管理的网络和学习协同设计框架
  • 批准号:
    2239458
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: An Algorithm and System Co-Designed Framework for Graph Sampling and Random Walk on GPUs
职业生涯:用于 GPU 上的图形采样和随机游走的算法和系统协同设计框架
  • 批准号:
    2326141
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: WolfPack: An Application-Network Co-Design Framework for Performance-Guaranteed Real-time Applications at the Network Edge
职业:WolfPack:用于网络边缘性能保证的实时应用程序的应用程序网络协同设计框架
  • 批准号:
    2045539
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: An Algorithm and System Co-Designed Framework for Graph Sampling and Random Walk on GPUs
职业生涯:用于 GPU 上的图形采样和随机游走的算法和系统协同设计框架
  • 批准号:
    2046102
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Testing the Combination of Behavioral Activation and Problem Solving as a Novel Behavioral Smoking Cessation Intervention for Smokers with HIV in Botswana
测试行为激活和解决问题相结合作为博茨瓦纳艾滋病毒吸烟者的新型戒烟行为干预措施
  • 批准号:
    10725267
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了