CAREER: A Networking and Learning Co-Design Framework for Data-Efficient Resource Management

职业:用于数据高效资源管理的网络和学习协同设计框架

基本信息

  • 批准号:
    2239458
  • 负责人:
  • 金额:
    $ 56万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-10-01 至 2028-09-30
  • 项目状态:
    未结题

项目摘要

Modern buildings require complex management of heating, ventilation, and air-conditioning (HVAC), lighting, blinds, and windows through collection of data from a variety of sensors. LoRaWAN (an open LPWAN protocol) along with LoRa physical layer technology (long range) has been a good choice for large-scale sensor networking with ability to offer long communication distance at low cost. According to LoRa Alliance (which manages the development of LoRaWAN), LoRaWAN outperforms conventional wireless networks (e.g., ZigBee and Wi-Fi) for smart buildings in many aspects, such as easy coverage of several floors in a building with a simple gateway, low power consumption, and long battery life of up to ten years. However, the current version of LoRaWAN can benefit from improved high transmission accuracies and lower energy consumption of sensor nodes. To tackle the above limitations of current LPWAN and machine learning solutions used for in-building climate control system, this project aims to investigate holistic networking and learning framework for resource management. In particular, the project focuses on building energy management as an example application. The goal is to design a building energy management system that optimizes the energy consumption of in-building climate systems jointly while meeting requirements of human comfort. The proposed building energy management system aims at achieving three design goals: 1) maximizing energy saving while maintaining occupants’ comfort, 2) being able to be deployed in buildings of multiple systems, and 3) searching for the optimal control policy with data efficiency. The proposed research activities will be carefully integrated with education activities at UC Merced, a Hispanic-serving institution, including curriculum development, interdisciplinary education, and engaging underrepresented groups.This project will develop a holistic networking and learning framework to jointly control climate in building. Three design goals will be achieved: maximizing energy saving while maintaining occupants’ comfort, being readily deployable in buildings with multiple control systems, and searching for the optimal control policy with data efficiency. TO achieve these design goals, the project is organized into three research thrusts: 1) building an indoor low-power wide area networking system for reliable data collection by a novel rateless-enabled data transmission mechanism and a bit-level network resource allocation scheme; 2) developing a data-efficient model-based reinforcement learning system for resource management by tackling fundamental research problems, such as incomplete training data, representation learning for mitigating data noise, and the bias problem of system dynamics models; 3) designing a networking and learning co-design scheme that considers a set of optimization goals in a unified framework, including building energy saving, occupants’ comfort, data efficiency of reinforcement learning, and wireless network lifetime.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
现代建筑需要通过从各种传感器收集数据来对供暖、通风和空调(HVAC)、照明、百叶窗和窗户进行复杂的管理。LoRaWAN(一种开放的LPWAN协议)沿着LoRa物理层技术(远程)一直是大规模传感器网络的良好选择,能够以低成本提供长距离通信。根据LoRa联盟(负责管理LoRaWAN的开发)的说法,LoRaWAN优于传统的无线网络(例如,ZigBee和Wi-Fi)在许多方面适用于智能建筑,例如通过简单的网关轻松覆盖建筑物中的几个楼层,低功耗以及长达十年的电池寿命。然而,当前版本的LoRaWAN可以受益于提高的高传输精度和降低传感器节点的能耗。为了解决目前用于建筑物内气候控制系统的LPWAN和机器学习解决方案的上述局限性,该项目旨在研究用于资源管理的整体网络和学习框架。特别是,该项目侧重于建筑能源管理作为一个示例应用程序。目的是设计一个建筑能源管理系统,在满足人类舒适性要求的同时,优化建筑内气候系统的能源消耗。所提出的建筑物能源管理系统旨在实现三个设计目标:1)在保持居住者舒适度的同时最大限度地节省能源,2)能够部署在多个系统的建筑物中,以及3)搜索具有数据效率的最优控制策略。拟议的研究活动将与加州大学默塞德的教育活动仔细整合,这是一所西班牙裔服务机构,包括课程开发,跨学科教育和参与代表性不足的群体。该项目将开发一个整体的网络和学习框架,以共同控制建筑气候。三个设计目标将实现:最大限度地节省能源,同时保持居住者的舒适度,易于部署在建筑物中的多个控制系统,并寻找最佳的控制策略与数据效率。为了实现这些设计目标,本项目分为三个研究方向:1)通过一种新的无速率数据传输机制和比特级网络资源分配方案,构建一个室内低功耗的广域网络系统,以实现可靠的数据采集; 2)通过解决基础研究问题,如不完整的训练数据,开发一个用于资源管理的数据高效的基于模型的强化学习系统,用于减轻数据噪声的表示学习,以及系统动态模型的偏差问题; 3)设计一种网络和学习协同设计方案,该方案在统一的框架中考虑一组优化目标,包括建筑节能,居住者舒适度,强化学习的数据效率,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的评估,被认为值得支持。影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wan Du其他文献

Exploring Deep Reinforcement Learning for Holistic Smart Building Control
探索深度强化学习的整体智能建筑控制
CO-MAP: Improving Multiple Access Efficiency of Mobile Wireless Network with Location Input
CO-MAP:通过位置输入提高移动无线网络的多路访问效率
Microdebrider vs. electrocautery for tonsillectomy: A meta-analysis
  • DOI:
    10.1016/j.ijporl.2010.09.007
  • 发表时间:
    2010-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Wan Du;Bin Ma;Yufen Guo;Kehu Yang
  • 通讯作者:
    Kehu Yang
MODES: Multi-sensor occupancy data-driven estimation system for smart buildings
模式:智能建筑多传感器占用数据驱动估计系统
Inhibition of STAT5 induces G1 cell cycle arrest and reduces tumor cell invasion in human colorectal cancer cells
抑制 STAT5 可诱导人结直肠癌细胞 G1 细胞周期停滞并减少肿瘤细胞侵袭
  • DOI:
    10.1038/labinvest.2009.11
  • 发表时间:
    2009-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Qin-Chuan Liang;Ying-Xuan Chen;Jing-Yuan Fang;Hui-Min Chen;Wen-Yu Su;Zhi-Gang Zhang;Wan Du;Hua Xiong
  • 通讯作者:
    Hua Xiong

Wan Du的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wan Du', 18)}}的其他基金

Collaborative Research: SHF: Small: Decentralized Edge Computing Platform for Privacy-Preserving Mobile Crowdsensing
合作研究:SHF:小型:用于保护隐私的移动群体感知的去中心化边缘计算平台
  • 批准号:
    2008837
  • 财政年份:
    2020
  • 资助金额:
    $ 56万
  • 项目类别:
    Standard Grant

相似海外基金

Improving Software Defined Networking with Machine Learning
通过机器学习改进软件定义网络
  • 批准号:
    22KF0428
  • 财政年份:
    2023
  • 资助金额:
    $ 56万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Adaptive Software-defined Networking for Internet of Underwater Things Based on Reinforcement Learning
基于强化学习的水下物联网自适应软件定义网络
  • 批准号:
    547594-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 56万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Adaptive Intelligent Wireless Networking with Advanced Communication and Machine Learning Techniques
具有先进通信和机器学习技术的自适应智能无线网络
  • 批准号:
    571576-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 56万
  • 项目类别:
    Alliance Grants
Building a Flexible Framework Towards Autonomous Networking Using Machine Learning Techniques
使用机器学习技术构建灵活的自主网络框架
  • 批准号:
    RGPIN-2020-06582
  • 财政年份:
    2022
  • 资助金额:
    $ 56万
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Vision and Learning Augmented D-Band Networking and Imaging
职业:视觉和学习增强 D 波段网络和成像
  • 批准号:
    2144505
  • 财政年份:
    2022
  • 资助金额:
    $ 56万
  • 项目类别:
    Continuing Grant
CAREER: Ubiquitous and Time-Critical Federated Learning with Cooperative Mobile Edge Networking
职业:具有协作移动边缘网络的无处不在且时间紧迫的联合学习
  • 批准号:
    2047761
  • 财政年份:
    2021
  • 资助金额:
    $ 56万
  • 项目类别:
    Continuing Grant
Building a Flexible Framework Towards Autonomous Networking Using Machine Learning Techniques
使用机器学习技术构建灵活的自主网络框架
  • 批准号:
    RGPIN-2020-06582
  • 财政年份:
    2021
  • 资助金额:
    $ 56万
  • 项目类别:
    Discovery Grants Program - Individual
Online Learning Activities of Jewish Languages and Cultural Networking among Jewish People
犹太语言在线学习活动与犹太人文化网络
  • 批准号:
    21K17956
  • 财政年份:
    2021
  • 资助金额:
    $ 56万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Machine learning for digital twins of optical networking infrastructure
光网络基础设施数字孪生的机器学习
  • 批准号:
    2634875
  • 财政年份:
    2021
  • 资助金额:
    $ 56万
  • 项目类别:
    Studentship
Adaptive Software-defined Networking for Internet of Underwater Things Based on Reinforcement Learning
基于强化学习的水下物联网自适应软件定义网络
  • 批准号:
    547594-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 56万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了