CAREER: Theory for Dynamic Graph Algorithms

职业:动态图算法理论

基本信息

项目摘要

Graphs are one of the most natural representations of relationships between data and are, hence, used in nearly every branch of science. Unfortunately, traditional graph algorithms are often no anymore viable because graphs in modern applications like†the internet/traffic/social networks are always evolving. To address this issue, dynamic graph algorithms research aims to design efficient methods for maintaining useful information (e.g., connectivity, shortest paths, matching) on graphs undergoing updates through time without wastefully recomputing answers from scratch after each update. In the last few years, several breakthroughs in dynamic graph problems reveal promising connections to other areas which are still unexplored and only known among experts. The goal of the project is to deepen, broaden, and popularize the theory of these connections, and continue attacking fundamental barriers in the field, as they will likely lead to even more exciting tools and connections. This research direction goes hand-in-hand with educational plans, such as developing a new undergraduate course on the principles of dynamic algorithms, publishing online educational videos, and bringing together researchers from related areas to exchange ideas and techniques through workshops. More concretely, this project aims to investigate the following connections between dynamic graph algorithms and other areas. The first direction is to develop generic techniques for dynamic algorithms robust against an adaptive adversary by using connections to differential privacy, cryptography, and fine-grained complexity theory. The second direction is to develop new sublinear time algorithms, graph sparsification, and graph decomposition techniques that will lead to breakthroughs in dynamic algorithms. The third direction is to dynamize continuous optimization methods and develop optimization tools for dynamic problems. Via these connections, the investigator aims to obtain optimal algorithms for fundamental dynamic graph problems, including dynamic matching, max flow, and reachability problems. These are the holy-grail problems that have exponential upper and lower bound gaps. Hence, even partial progress should advance our understanding of the field and be useful as a subroutine for future algorithms. The multi-disciplinary approach above should naturally make impacts beyond dynamic graph algorithms.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
图形是数据之间关系的最自然的表示之一,因此,几乎在科学的每个分支中使用。不幸的是,传统的图算法往往不再可行,因为图在现代应用中,如互联网/交通/社交网络,总是在不断发展。为了解决这个问题,动态图算法研究旨在设计用于维护有用信息(例如,连通性、最短路径、匹配),而不会在每次更新之后从头开始浪费地重新计算答案。在过去的几年里,动态图问题的几个突破揭示了与其他领域的有希望的联系,这些领域尚未探索,只有专家才知道。该项目的目标是深化、拓宽和推广这些连接的理论,并继续攻击该领域的基本障碍,因为它们可能会导致更令人兴奋的工具和连接。该研究方向与教育计划密切相关,例如开发关于动态算法原理的新本科课程,发布在线教育视频,并将相关领域的研究人员聚集在一起,通过研讨会交流思想和技术。更具体地说,本项目旨在研究动态图算法与其他领域之间的以下联系。第一个方向是开发通用技术的动态算法强大的适应性对手通过使用连接到差分隐私,密码学和细粒度的复杂性理论。第二个方向是开发新的次线性时间算法、图稀疏化和图分解技术,这些技术将导致动态算法的突破。第三个方向是动态化连续优化方法,开发动态问题的优化工具。通过这些连接,研究者的目标是获得基本动态图问题的最优算法,包括动态匹配,最大流和可达性问题。这些都是圣杯问题,有指数上限和下限差距。因此,即使是部分的进展,应该推进我们对该领域的理解,并作为未来算法的子程序是有用的。上述多学科方法自然会产生超越动态图算法的影响。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thatchaphol Saranurak其他文献

Dynamic spanning forest with worst-case update time: adaptive, Las Vegas, and O(n1/2 - ε)-time
具有最坏情况更新时间的动态生成森林:自适应、拉斯维加斯和 O(n1/2 - ε) 时间
Deterministic Decremental Reachability, SCC, and Shortest Paths via Directed Expanders and Congestion Balancing
通过定向扩展器和拥塞平衡实现确定性递减可达性、SCC 和最短路径
Tight Conditional Lower Bounds for Vertex Connectivity Problems
顶点连接问题的严格条件下界
Breaking quadratic time for small vertex connectivity and an approximation scheme
小顶点连通性的打破二次时间和近似方案
Dynamic Algorithms for Packing-Covering LPs via Multiplicative Weight Updates
通过乘法权重更新进行打包覆盖 LP 的动态算法

Thatchaphol Saranurak的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
  • 批准号:
    12247163
  • 批准年份:
    2022
  • 资助金额:
    18.00 万元
  • 项目类别:
    专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
  • 批准号:
    12126512
  • 批准年份:
    2021
  • 资助金额:
    12.0 万元
  • 项目类别:
    数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
  • 批准号:
    61671064
  • 批准年份:
    2016
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目

相似海外基金

RII Track-4:NSF: Enable Next-Generation Solid-State Batteries via Dynamic Modeling and Control: Theory and Experiments
RII Track-4:NSF:通过动态建模和控制实现下一代固态电池:理论和实验
  • 批准号:
    2327327
  • 财政年份:
    2024
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Developing Data-driven Robustness and Safety from Single Agent Settings to Stochastic Dynamic Teams: Theory and Applications
CPS:中:协作研究:从单代理设置到随机动态团队开发数据驱动的鲁棒性和安全性:理论与应用
  • 批准号:
    2240982
  • 财政年份:
    2023
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant
Control systems design to ensure availability and reliability for fundamental theory establishment operating dynamic societal systems
控制系统设计,确保建立运行动态社会系统的基础理论的可用性和可靠性
  • 批准号:
    23K13358
  • 财政年份:
    2023
  • 资助金额:
    $ 65万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Dynamic treatment regimes via smooth surrogate loss: theory, methods, and computational aspects
通过平滑替代损失的动态治疗方案:理论、方法和计算方面
  • 批准号:
    2311098
  • 财政年份:
    2023
  • 资助金额:
    $ 65万
  • 项目类别:
    Continuing Grant
CPS: Medium: Collaborative Research: Developing Data-driven Robustness and Safety from Single Agent Settings to Stochastic Dynamic Teams: Theory and Applications
CPS:中:协作研究:从单代理设置到随机动态团队开发数据驱动的鲁棒性和安全性:理论与应用
  • 批准号:
    2240981
  • 财政年份:
    2023
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant
Dynamic inefficiency and Secular Stagnation in Japan: Theory and Evidence
日本的动态低效率和长期停滞:理论与证据
  • 批准号:
    23H00797
  • 财政年份:
    2023
  • 资助金额:
    $ 65万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Machine-Aided General Framework for Fluctuating Dynamic Density Functional Theory (MAGFFDDFT)
波动动态密度泛函理论的机器辅助通用框架 (MAGFFDDFT)
  • 批准号:
    EP/X038645/1
  • 财政年份:
    2023
  • 资助金额:
    $ 65万
  • 项目类别:
    Research Grant
Coupling of Modified Equation of State and Percolation Theory to Study Static and Dynamic Non-Equilibrium Phase Behavior of Heavy Oil in the Presence of Porous Medium
修正状态方程与渗流理论耦合研究多孔介质中稠油静态和动态非平衡相行为
  • 批准号:
    RGPIN-2019-06103
  • 财政年份:
    2022
  • 资助金额:
    $ 65万
  • 项目类别:
    Discovery Grants Program - Individual
Dynamic Games: Theory, Algorithms and Applications
动态博弈:理论、算法和应用
  • 批准号:
    RGPIN-2021-02462
  • 财政年份:
    2022
  • 资助金额:
    $ 65万
  • 项目类别:
    Discovery Grants Program - Individual
Dynamic Group Scheduling: Theory and Applications
动态组调度:理论与应用
  • 批准号:
    RGPIN-2017-05648
  • 财政年份:
    2022
  • 资助金额:
    $ 65万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了