CPS: Medium: Collaborative Research: Developing Data-driven Robustness and Safety from Single Agent Settings to Stochastic Dynamic Teams: Theory and Applications
CPS:中:协作研究:从单代理设置到随机动态团队开发数据驱动的鲁棒性和安全性:理论与应用
基本信息
- 批准号:2240982
- 负责人:
- 金额:$ 32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This Cyber-Physical Systems (CPS) project will make foundational methodological advances that enable safe and robust reinforcement learning (RL)-based control algorithmic solutions that are driven by problems in smart traffic signal control systems. Recent advances in computation, communication, storage, and sensing have led to a demand for data-driven learning-based decision-making and control in modern cyber-physical systems (CPSs), such as smart transportation systems. In such systems, decision-making agents need to operate safely and in a robust manner while working in complex environments with constraints that need to be respected. This project will develop foundational advances in robust RL solutions, and safe and constrained RL with provable guarantees by taking traffic signal control systems within smart transportation systems as our motivating CPS application and evaluation platform. This work will additionally focus on advancing curriculum development, recruitment of students from under-represented groups, involvement of undergraduate students in research, K-12 outreach, and also research community outreach via workshops, conference sessions, and seminars. The researchers will interface with companies and other stakeholders to communicate the results of the research as well as provide them with educational material on methodology. The technical approaches include: 1. Robust RL solutions incorporating model class knowledge, use of future predictions and robustness characterizations, and off-policy methods to address distributional shifts and data paucity arising from the use of a simulator/emulator or offline data; and 2. Efficient, safe, and constrained RL algorithms using model-free approaches and function-approximated methods, and also methods for partially-observed systems. To close the loop with the motivating CPS application, the RL algorithms will be evaluated in the context of traffic signal control via a comprehensive simulation-based evaluation using models of two instrumented sites.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这一网络物理系统(CPS)项目将在方法学上取得基础性进展,以实现由智能交通信号控制系统中的问题驱动的基于强化学习(RL)的安全和稳健的控制算法解决方案。计算、通信、存储和传感方面的最新进展导致了现代网络物理系统(CPSS)(如智能交通系统)对基于数据驱动的学习的决策和控制的需求。在这样的系统中,决策代理需要以安全和健壮的方式操作,同时在具有需要遵守的约束的复杂环境中工作。该项目将以智能交通系统中的交通信号控制系统为激励CPS应用和评估平台,在稳健的RL解决方案和安全约束的RL方面取得基础性进展,并提供可证明的保证。这项工作还将侧重于促进课程开发,从代表性不足的群体中招收学生,本科生参与研究,K-12外联,以及通过讲习班、会议和研讨会进行研究社区外联。研究人员将与公司和其他利益攸关方沟通研究结果,并为他们提供方法论方面的教育材料。所述技术方法包括:1.结合模型类知识、未来预测和稳健性表征以及非策略方法的健壮RL解决方案,以解决由于使用模拟器/仿真器或离线数据而引起的分布移位和数据匮乏;以及2.使用无模型方法和函数近似方法的高效、安全和受限的RL算法,以及用于部分观测系统的方法。为了用激励性的CPS应用程序结束环路,RL算法将在交通信号控制的背景下通过使用两个仪表站的模型进行基于模拟的综合评估进行评估。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Debankur Mukherjee其他文献
Asymptotic Optimality of Power-of-d Load Balancing in Large-Scale Systems
大型系统中 d 次方负载平衡的渐近最优性
- DOI:
10.1287/moor.2019.1042 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Debankur Mukherjee;S. Borst;J. V. Leeuwaarden;P. Whiting - 通讯作者:
P. Whiting
Rates of convergence of the join the shortest queue policy for large-system heavy traffic
大型系统大流量加入最短队列策略的收敛率
- DOI:
10.1007/s11134-022-09803-5 - 发表时间:
2022 - 期刊:
- 影响因子:1.2
- 作者:
Debankur Mukherjee - 通讯作者:
Debankur Mukherjee
Best of Both Worlds: Stochastic and Adversarial Convex Function Chasing
两全其美:随机和对抗性凸函数追逐
- DOI:
10.48550/arxiv.2311.00181 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Neelkamal Bhuyan;Debankur Mukherjee;Adam Wierman - 通讯作者:
Adam Wierman
Aktueller Stand zur Neurobiologie von COVID-19
COVID-19 神经生物学最新立场
- DOI:
10.1055/a-1213-1778 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Daan Rutten;Nicolas H. Christianson;Debankur Mukherjee;A. Wierman - 通讯作者:
A. Wierman
Independent-set reconfiguration thresholds of hereditary graph classes
- DOI:
10.1016/j.dam.2018.05.029 - 发表时间:
2018-12-11 - 期刊:
- 影响因子:
- 作者:
Mark de Berg;Bart M.P. Jansen;Debankur Mukherjee - 通讯作者:
Debankur Mukherjee
Debankur Mukherjee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Debankur Mukherjee', 18)}}的其他基金
CIF: Small: Load Balancing for Cloud Networks: Data Locality Issues and Modern Algorithms
CIF:小型:云网络的负载平衡:数据局部性问题和现代算法
- 批准号:
2113027 - 财政年份:2021
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
- 批准号:
2322534 - 财政年份:2024
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
- 批准号:
2322533 - 财政年份:2024
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Physics-Model-Based Neural Networks Redesign for CPS Learning and Control
合作研究:CPS:中:基于物理模型的神经网络重新设计用于 CPS 学习和控制
- 批准号:
2311084 - 财政年份:2023
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
CPS: Medium: Collaborative Research: Provably Safe and Robust Multi-Agent Reinforcement Learning with Applications in Urban Air Mobility
CPS:中:协作研究:可证明安全且鲁棒的多智能体强化学习及其在城市空中交通中的应用
- 批准号:
2312092 - 财政年份:2023
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Sensor Attack Detection and Recovery in Cyber-Physical Systems
合作研究:CPS:中:网络物理系统中的传感器攻击检测和恢复
- 批准号:
2333980 - 财政年份:2023
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: An Online Learning Framework for Socially Emerging Mixed Mobility
协作研究:CPS:媒介:社会新兴混合出行的在线学习框架
- 批准号:
2401007 - 财政年份:2023
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
CPS: Medium: Collaborative Research: Robust Sensing and Learning for Autonomous Driving Against Perceptual Illusion
CPS:中:协作研究:针对自动驾驶对抗知觉错觉的鲁棒感知和学习
- 批准号:
2235231 - 财政年份:2023
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Data Driven Modeling and Analysis of Energy Conversion Systems -- Manifold Learning and Approximation
合作研究:CPS:媒介:能量转换系统的数据驱动建模和分析——流形学习和逼近
- 批准号:
2223987 - 财政年份:2023
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Mutualistic Cyber-Physical Interaction for Self-Adaptive Multi-Damage Monitoring of Civil Infrastructure
合作研究:CPS:中:土木基础设施自适应多损伤监测的互信息物理交互
- 批准号:
2305882 - 财政年份:2023
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
CPS Medium: Collaborative Research: Physics-Informed Learning and Control of Passive and Hybrid Conditioning Systems in Buildings
CPS 媒介:协作研究:建筑物中被动和混合空调系统的物理信息学习和控制
- 批准号:
2241796 - 财政年份:2023
- 资助金额:
$ 32万 - 项目类别:
Standard Grant