CAREER: Continuous Flow Chemistry of Microelectronics Polymers via Combined Physics-based and Machine Learning Models
职业:通过基于物理和机器学习相结合的微电子聚合物的连续流动化学
基本信息
- 批准号:2238147
- 负责人:
- 金额:$ 57.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2028-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Microelectronics polymers are essential in the development of semiconductor technology. Precise microchip manufacturing hinges on high-quality polymer inputs. However, current methods for producing microelectronics polymers do not satisfy all the requirements of high throughput manufacturing due to challenges with scale-up, process control, purity, quality control, and production time. To tackle some of these challenges, the PI plans to create a platform for data-driven design of polymer materials and their manufacturing processes, as well as optimal operation and control of these processes. The PI’s unique approach is to replace the current practice of high-volume batch reactors with continuous flow reactors that allow for the precise control of polymer properties and structure. The proposed platform is eco-friendly, as it promises to reduce the carbon footprint, decrease operating costs, and limit the amount of inferior, unusable materials generated during the manufacturing. The program will also advance knowledge across several other fields, as the modeling and manufacturing knowledge gained from this project will be applicable to other specialty polymers. In addition to training graduate and undergraduate students in research, the project will contribute to the development of course materials on advanced manufacturing and will involve outreach activities in the form of high school teacher trainings focused on advanced manufacturing and microelectronics.This project will address several fundamental research problems related to microelectronics polymers manufacturing. Researchers will investigate the effect of reaction conditions, process parameters, and quality of raw materials on the microelectronics polymers properties, and quality attributes. Experimental and theoretical/computational studies will be performed to enable the continuous flow chemistry of microelectronics polymers. Combined physics-based and machine learning process models will be developed to predict the dynamics of the processes that produce these polymers. These models will account for heat, mass, and momentum transfer and reaction kinetics to predict process variables such as polymer molecular weight and polymer compositions. These models will also provide better understanding of reaction mechanisms and structure-property relationship of microelectronics polymers synthesized in flow reactors. Therefore, it is expected that the models will reduce the chemical dimensional space to expedite the discovery of new microelectronics polymers that meet the required molecular structure-property relationships. A deliverable of this project is a manufacturing platform that uses online information from reaction monitoring and in operando spectroscopy for feedback control of polymer quality attributes, allowing for the efficient continuous and autonomous production of microelectronics polymers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
微电子聚合物在半导体技术的发展中至关重要。精密的微芯片制造取决于高质量的聚合物输入。然而,由于规模扩大、工艺控制、纯度、质量控制和生产时间的挑战,目前用于生产微电子聚合物的方法不能满足高通量制造的所有要求。为了应对其中的一些挑战,PI计划创建一个平台,用于聚合物材料及其制造工艺的数据驱动设计,以及这些工艺的优化操作和控制。PI的独特方法是用连续流反应器取代目前的大容量间歇反应器,从而精确控制聚合物的性能和结构。拟议的平台是生态友好的,因为它承诺减少碳足迹,降低运营成本,并限制制造过程中产生的劣质,不可用的材料的数量。该计划还将推进其他几个领域的知识,因为从该项目中获得的建模和制造知识将适用于其他特种聚合物。除了对研究生和本科生进行研究方面的培训外,该项目还将帮助编写先进制造课程材料,并将开展以先进制造和微电子为重点的高中教师培训形式的外联活动,该项目将解决与微电子聚合物制造有关的几个基本研究问题。研究人员将研究反应条件、工艺参数和原材料质量对微电子聚合物性能和质量属性的影响。将进行实验和理论/计算研究,以实现微电子聚合物的连续流动化学。将开发基于物理和机器学习的组合过程模型,以预测生产这些聚合物的过程的动态。这些模型将考虑热量、质量和动量传递以及反应动力学,以预测聚合物分子量和聚合物组成等工艺变量。这些模型也将有助于更好地理解在流动反应器中合成微电子聚合物的反应机理和结构与性能的关系。因此,预计该模型将减少化学维空间,以加快发现新的微电子聚合物,满足所需的分子结构-性能关系。该项目的一个交付成果是一个制造平台,该平台使用来自反应监测和操作光谱学的在线信息对聚合物质量属性进行反馈控制,从而实现微电子聚合物的高效连续和自主生产。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mona Bavarian其他文献
A PREDICTIVE MODEL FOR IN-SITU MONITORING OF MOLECULAR WEIGHT OF COPOLYMERS USING SPECTROSCOPIC METHODS
使用光谱方法原位监测共聚物分子量的预测模型
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Tung Nguyen;A. A. Shamsabadi;Mona Bavarian - 通讯作者:
Mona Bavarian
Coupling ATR-FTIR Spectroscopy with Multivariate Analysis for Polymers Manufacturing and Control of Polymers’ Molecular Weight
ATR-FTIR 光谱与多变量分析相结合用于聚合物制造和聚合物分子量控制
- DOI:
10.1016/j.dche.2023.100089 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Tung Nguyen;A. A. Shamsabadi;Mona Bavarian - 通讯作者:
Mona Bavarian
Modeling and Bifurcation Analysis of a Coionic Conducting Solid Oxide Fuel Cell
共离子导电固体氧化物燃料电池的建模和分叉分析
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Mona Bavarian;I. Kevrekidis;J. Benziger;M. Soroush - 通讯作者:
M. Soroush
Steady-state multiplicity in a solid oxide fuel cell: Practical considerations
固体氧化物燃料电池中的稳态多重性:实际考虑
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Mona Bavarian;M. Soroush - 通讯作者:
M. Soroush
Mona Bavarian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
3D Printing Proteins for Continuous Flow Biocatalysis and Bioabsorbtion
用于连续流生物催化和生物吸收的 3D 打印蛋白质
- 批准号:
2753054 - 财政年份:2026
- 资助金额:
$ 57.68万 - 项目类别:
Studentship
Collaborative Research: Scalable Nanomanufacturing of Perovskite-Analogue Nanocrystals via Continuous Flow Reactors
合作研究:通过连续流反应器进行钙钛矿类似物纳米晶体的可扩展纳米制造
- 批准号:
2315997 - 财政年份:2024
- 资助金额:
$ 57.68万 - 项目类别:
Standard Grant
Continuous flow solvothermal synthesis of silver-3d metals nanoalloys for platinum-group-free catalysts
用于无铂族催化剂的银-3D金属纳米合金的连续流动溶剂热合成
- 批准号:
24K17587 - 财政年份:2024
- 资助金额:
$ 57.68万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
AI Assisted Continuous Flow Electrochemistry for Pharmaceutical Manufacture
人工智能辅助制药制造的连续流电化学
- 批准号:
LP230100436 - 财政年份:2024
- 资助金额:
$ 57.68万 - 项目类别:
Linkage Projects
Sus-Flow: Accelerating Sustainable Continuous Medicine Manufacture via Photo-, Electro-and Thermo-chemistry with Next-Generation Reactors
Sus-Flow:利用下一代反应器通过光化学、电化学和热化学加速可持续连续药物制造
- 批准号:
EP/Z53299X/1 - 财政年份:2024
- 资助金额:
$ 57.68万 - 项目类别:
Research Grant
Collaborative Research: Scalable Nanomanufacturing of Perovskite-Analogue Nanocrystals via Continuous Flow Reactors
合作研究:通过连续流反应器进行钙钛矿类似物纳米晶体的可扩展纳米制造
- 批准号:
2315996 - 财政年份:2024
- 资助金额:
$ 57.68万 - 项目类别:
Standard Grant
Continuous finite element methods for under resolved turbulence in compressible flow
可压缩流中未解析湍流的连续有限元方法
- 批准号:
EP/X042650/1 - 财政年份:2024
- 资助金额:
$ 57.68万 - 项目类别:
Research Grant
More sustainable biocatalytic imine reductions to chiral amines with hydrogen-driven NADPH recycling operated in batch and continuous flow
通过批量和连续流操作的氢驱动 NADPH 回收,更可持续地生物催化亚胺还原为手性胺
- 批准号:
2889869 - 财政年份:2023
- 资助金额:
$ 57.68万 - 项目类别:
Studentship
GOALI: Novel Plug flow Continuous Crystallizer with Diaphragm-Driven Suspension Transfer
GOALI:带有隔膜驱动悬浮液传输的新型活塞流连续结晶器
- 批准号:
2242255 - 财政年份:2023
- 资助金额:
$ 57.68万 - 项目类别:
Standard Grant
Automated Flow Synthesis: In-Line Reaction Monitoring and Machine Learning for the Optimisation of Continuous Flow Photocatalytic Reactions
自动流动合成:用于优化连续流动光催化反应的在线反应监测和机器学习
- 批准号:
2894726 - 财政年份:2023
- 资助金额:
$ 57.68万 - 项目类别:
Studentship