CAREER: Pattern formation in singularly perturbed partial differential equations
职业:奇异摄动偏微分方程中的模式形成
基本信息
- 批准号:2238127
- 负责人:
- 金额:$ 49.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2028-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Spatiotemporal pattern formation appears throughout the natural world; examples include the dynamics of vegetation patterns in dryland ecosystems, phase separation in mixtures, and patterns in chemical reactions. Fundamental theoretical questions concern identifying universal pattern-forming mechanisms and predicting the nature and dynamics of the patterns which appear. This project aims to address these questions through the study of pattern-forming instabilities in the setting of partial differential equations (PDEs) arising in models from biology, ecology, and chemical reactions. In particular, the project focuses on the development of techniques to tackle pattern formation in PDEs which are singularly perturbed; such equations arise naturally in the study of systems where components operate on widely differing length or time scales. Application areas include desertification fronts in dryland ecosystems, as well as wave phenomena in mathematical biology and neuroscience. Included in the project are activities which integrate research and education through the supervision of graduate students as well as outreach programs and summer research opportunities for undergraduate students.This project focuses on three primary research areas, with the goal of providing insight into complex spatiotemporal pattern formation phenomena in singularly perturbed reaction diffusion PDEs. Motivated by the phenomenon of desertification fronts in dryland ecosystems, the first research area concerns pattern-forming instabilities of bistable planar interfaces in multi-component reaction diffusion systems. The second area aims to build a rigorous theory of temporal pulse replication, by which a single traveling pulse (or localized wave) self-replicates, sequentially nucleating additional pulses in a manner resembling a spatiotemporal canard explosion. The third area is concerned with the nature and properties of far-from-onset patterns formed in the wake of pattern-forming invasion processes, whereby a pattern is nucleated when a disturbance invades an unstable steady state. These research areas will grow and advance the theory of far-from-onset pattern-forming mechanisms through the development of geometric singular perturbation methods and spatial dynamical systems tools to be used in the existence, stability, and bifurcation analysis of waves and patterns. Several of the phenomena explored in this project occur in regions where standard singular perturbation methods break down, requiring the development of novel techniques. Graduate students and undergraduate students will participate in various aspects of the project.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
时空格局的形成出现在整个自然界;例子包括旱地生态系统中植被格局的动态、混合物的相分离和化学反应的格局。基本的理论问题涉及识别普遍的模式形成机制,并预测出现的模式的性质和动态。该项目旨在通过研究生物学、生态学和化学反应模型中偏微分方程(PDE)的模式形成不稳定性来解决这些问题。 特别是,该项目的重点是开发技术,以解决模式形成的偏微分方程是奇摄动;这样的方程自然出现在系统的研究中,组件在不同的长度或时间尺度上运行。应用领域包括旱地生态系统中的荒漠化前沿,以及数学生物学和神经科学中的波动现象。该项目包括通过研究生的监督以及拓展计划和本科生的暑期研究机会,将研究和教育结合起来的活动。该项目侧重于三个主要研究领域,旨在深入了解奇异扰动反应扩散偏微分方程中复杂的时空模式形成现象。受干旱地区生态系统中荒漠化锋现象的影响,第一个研究领域涉及多组分反应扩散系统中平面界面的模式形成不稳定性。第二个领域旨在建立一个严格的时间脉冲复制理论,通过该理论,单个行进脉冲(或局部波)自我复制,以类似于时空鸭式爆炸的方式依次使额外的脉冲成核。第三个领域是关注的性质和性质的远从发病模式形成后的模式形成的入侵过程中,从而一个模式是成核时,扰动入侵一个不稳定的稳定状态。这些研究领域将通过发展几何奇异摄动方法和空间动力系统工具来发展和推进远离发病模式形成机制的理论,这些工具将用于波和模式的存在,稳定性和分叉分析。在这个项目中探索的几个现象发生在标准奇异摄动方法崩溃的地区,需要开发新的技术。研究生和本科生将参与该项目的各个方面。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paul Carter其他文献
Phonetic Interpretation Papers in Laboratory Phonology VI: Extrinsic phonetic interpretation: spectral variation in English liquids
实验室音系学中的语音解释论文 VI:外在语音解释:英语液体中的光谱变化
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
Paul Carter - 通讯作者:
Paul Carter
Direct current measurements in cochlear implants: an in vivo and in vitro study
人工耳蜗的直流测量:体内和体外研究
- DOI:
10.1109/icbem.1998.666422 - 发表时间:
1998 - 期刊:
- 影响因子:0
- 作者:
Christie Q. Huang;Paul Carter;R. K. Shepherd;P. Seligman;Bruce Tabor;Graeme M. Clark - 通讯作者:
Graeme M. Clark
THE IMPACT OF GENDER AND MARITAL STATUS ON LONG TERM MORTALITY IN PATIENTS WITH CARDIOVASCULAR DISEASE: INSIGHTS UTILIZING BIG DATA FROM THE ACALM STUDY
- DOI:
10.1016/s0735-1097(19)32438-6 - 发表时间:
2019-03-12 - 期刊:
- 影响因子:
- 作者:
Rahul Potluri;Paul Carter;Billal Patel;Ranjit More;Deepthi Lavu - 通讯作者:
Deepthi Lavu
A new method for the partition function of discrete systems with application to the 3D Ising model
应用于3D Ising模型的离散系统配分函数新方法
- DOI:
10.1016/0370-2693(87)90973-7 - 发表时间:
1987 - 期刊:
- 影响因子:4.4
- 作者:
G. Bhanot;Steve Black;Paul Carter;R. Salvador - 通讯作者:
R. Salvador
Genetic Determinants of Lipids and Cardiovascular Disease Outcomes
血脂和心血管疾病结果的遗传决定因素
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
E. Allara;G. Morani;Paul Carter;A. Gkatzionis;V. Zuber;Christopher N. Foley;Jessica M B Rees;A. Mason;S. Bell;D. Gill;A. Butterworth;E. Angelantonio;J. Peters;S. Burgess - 通讯作者:
S. Burgess
Paul Carter的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Paul Carter', 18)}}的其他基金
Teaching the "Voices of the Victorian Poor"
教授“维多利亚时代穷人的声音”
- 批准号:
AH/V010565/1 - 财政年份:2021
- 资助金额:
$ 49.67万 - 项目类别:
Research Grant
Patterns and Bifurcations in Multiple Timescale Dynamical Systems
多时间尺度动力系统中的模式和分岔
- 批准号:
2204758 - 财政年份:2021
- 资助金额:
$ 49.67万 - 项目类别:
Continuing Grant
Self-Organization, Stability, and Defects in Pattern-Forming Systems
模式形成系统的自组织、稳定性和缺陷
- 批准号:
2105816 - 财政年份:2021
- 资助金额:
$ 49.67万 - 项目类别:
Standard Grant
Patterns and Bifurcations in Multiple Timescale Dynamical Systems
多时间尺度动力系统中的模式和分岔
- 批准号:
2016216 - 财政年份:2019
- 资助金额:
$ 49.67万 - 项目类别:
Continuing Grant
Patterns and Bifurcations in Multiple Timescale Dynamical Systems
多时间尺度动力系统中的模式和分岔
- 批准号:
1815315 - 财政年份:2018
- 资助金额:
$ 49.67万 - 项目类别:
Continuing Grant
相似国自然基金
Nano/Micro-surface pattern的摩擦特性研究
- 批准号:50765008
- 批准年份:2007
- 资助金额:22.0 万元
- 项目类别:地区科学基金项目
图案(Pattern)动力学方法的初探
- 批准号:19472043
- 批准年份:1994
- 资助金额:6.5 万元
- 项目类别:面上项目
激光等离子体中的Pattern动力学及时空混沌
- 批准号:19375038
- 批准年份:1993
- 资助金额:3.0 万元
- 项目类别:面上项目
相似海外基金
Design and Analysis of Structure Preserving Discretizations to Simulate Pattern Formation in Liquid Crystals and Ferrofluids
模拟液晶和铁磁流体中图案形成的结构保持离散化的设计和分析
- 批准号:
2409989 - 财政年份:2024
- 资助金额:
$ 49.67万 - 项目类别:
Standard Grant
Observation of pattern formation in low-energy electron diffraction (LEED) under single electron incidence conditions
单电子入射条件下低能电子衍射 (LEED) 图案形成的观察
- 批准号:
23K11711 - 财政年份:2023
- 资助金额:
$ 49.67万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis of the effect of integral kernel shape on pattern formation in nonlocal reaction-diffusion equations
积分核形状对非局部反应扩散方程模式形成的影响分析
- 批准号:
23K13013 - 财政年份:2023
- 资助金额:
$ 49.67万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Pattern formation in drying bio-fluid droplets: From Fundamentals to Data-driven Disease Screening
干燥生物液滴的模式形成:从基础知识到数据驱动的疾病筛查
- 批准号:
23KF0104 - 财政年份:2023
- 资助金额:
$ 49.67万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Establishment of a new epidermal culture focusing on keratinocyte pattern formation
建立专注于角质形成细胞模式形成的新型表皮培养物
- 批准号:
23K15277 - 财政年份:2023
- 资助金额:
$ 49.67万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Geometric and numerical studies of the behavior and pattern formation of powders and charged particles under periodic external forces
粉末和带电粒子在周期性外力作用下的行为和图案形成的几何和数值研究
- 批准号:
23K03260 - 财政年份:2023
- 资助金额:
$ 49.67万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Spatial Control of Pattern Formation in Early Vertebrate Development
早期脊椎动物发育中模式形成的空间控制
- 批准号:
10673415 - 财政年份:2022
- 资助金额:
$ 49.67万 - 项目类别:
Regulatory mechanisms controlling pattern formation in the vertebrate embryo
控制脊椎动物胚胎模式形成的调节机制
- 批准号:
RGPIN-2019-05085 - 财政年份:2022
- 资助金额:
$ 49.67万 - 项目类别:
Discovery Grants Program - Individual
Regularity of minimizers and pattern formation in geometric minimization problems
几何最小化问题中最小化器的正则性和模式形成
- 批准号:
RGPIN-2018-06295 - 财政年份:2022
- 资助金额:
$ 49.67万 - 项目类别:
Discovery Grants Program - Individual