CAREER: CAS- Climate: An altruistic game theoretic framework to characterize environmental responsiveness of residential electricity consumption

职业:CAS-气候:描述住宅用电环境响应的利他博弈理论框架

基本信息

  • 批准号:
    2238381
  • 负责人:
  • 金额:
    $ 50.8万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-02-15 至 2028-01-31
  • 项目状态:
    未结题

项目摘要

For most electricity markets in the U.S., the marginal cost and carbon emission intensity of electricity generation exhibit opposite diurnal trends: during peak demand hours, the electricity price is high while the carbon marginal emission rate is low due to the operation of costly but less polluting natural gas “peaker” plants. Energy consumers may respond to the conflicting price and emission signals quite differently. Understanding the behavioral heterogeneity in energy use and its impact on sustainability of the electrical infrastructure is of critical importance to accelerating global energy system decarbonization. This project will establish an altruistic game theoretic framework to understand the interplay of an individual’s financial and environmental goals in shaping their energy use behaviors and to evaluate the impact of behavioral heterogeneity on system-level performances of the electric grid. The altruistic game framework models each energy consumer as a partially altruistic entity whose perceived cost is a weighted sum of his/her direct electricity cost and the social cost of energy-related carbon emission. The weighting factor characterizes an individual’s valuation of energy-related carbon emission, which in turn influences their energy use behaviors. Customer behavioral models will be developed from data collected through (1) online human subject tests with a custom designed demand response game and (2) sociotechnical experiments in a multi-family apartment complex within a historic African American community in downtown Oklahoma City.Project goals include: (1) generation of new knowledge on residential customers’ valuation of energy-related carbon emission and its impact on energy use behaviors; (2) development of a statistical behavioral model that characterizes how climate altruism correlates with socio-demographic variables; (3) synthesis of learning-based model predictive control strategies to enable automated demand response; (4) establishment of an altruistic game theoretic framework to facilitate impact analysis of behavioral heterogeneity on financial and environmental performances of the electric grid; and (5) design of distributed and privacy-preserving Nash equilibrium solution algorithms to accommodate distributed decision making for flexible load control in electricity markets. The project aims to increase public awareness of load flexibility and the associated environmental impact through a series of interrelated research, educational and outreach activities. The data-driven predictive control strategies are designed to unlock the residential flexibility potential through technological development, while the game theoretic framework supports design and assessment of demand-side carbon reduction technologies, programs and policies with socio-economic insights. The field experiment will directly engage 50 and indirectly affect more than 300 households in Oklahoma City providing technology solutions to and educating a population that does not usually engage in the early stages of technology adoption. Through collaboration with the community, developers and other partners, the project will demonstrate social drivers that affect large infrastructure systems, with the results potentially scalable and applicable on a national level in the residential sector. Through the education program development, this project will provide opportunities for K-12, underrepresented, undergraduate, and graduate students to acquire cross-disciplinary skills that are critical to addressing future engineering challenges.This project is jointly funded by the CBET Environmental Sustainability program and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
对于美国的大多数电力市场来说,发电的边际成本和碳排放强度呈现出相反的日趋势:在用电高峰时段,电价高,而碳边际排放率低,这是由于运行成本高但污染较小的天然气“调峰”电厂。能源消费者可能会对相互冲突的价格和排放信号做出完全不同的反应。了解能源使用的行为异质性及其对电力基础设施可持续性的影响,对于加速全球能源系统脱碳至关重要。本研究将建立一个利他博弈理论框架,以了解个人的财务和环境目标在塑造其能源使用行为中的相互作用,并评估行为异质性对电网系统级性能的影响。利他博弈框架将每个能源消费者视为一个部分利他的实体,其感知成本是他/她的直接电力成本和能源相关的碳排放的社会成本的加权和。权重因子表征了个体对与能源相关的碳排放的评价,进而影响其能源使用行为。客户行为模型将根据收集的数据开发,这些数据是通过(1)使用定制设计的需求响应游戏进行的在线人类受试者测试,以及(2)在俄克拉荷马州市中心一个历史悠久的非裔美国人社区内的多户公寓大楼中进行的社会技术实验。项目目标包括:(1)关于居民消费者对能源相关碳排放的评估及其对能源使用行为的影响的新知识的产生;(2)开发一个统计行为模型,描述气候利他主义如何与社会人口变量相关;(3)综合基于学习的模型预测控制策略,以实现自动需求响应;(四个)建立一个利他博弈理论框架,以便于分析行为异质性对财务和环境绩效的影响电网;(5)设计分布式隐私保护Nash均衡求解算法,以适应电力市场中灵活负荷控制的分布式决策。该项目旨在通过一系列相互关联的研究、教育和外联活动,提高公众对负荷灵活性和相关环境影响的认识。数据驱动的预测控制策略旨在通过技术发展释放住宅灵活性潜力,而博弈论框架支持设计和评估需求方的碳减排技术,计划和政策,并具有社会经济见解。现场实验将直接参与俄克拉荷马州的50个家庭,间接影响300多个家庭,为通常不参与技术采用早期阶段的人口提供技术解决方案和教育。通过与社区,开发商和其他合作伙伴的合作,该项目将展示影响大型基础设施系统的社会驱动因素,其结果可能在国家一级的住宅部门中扩展和适用。通过教育计划的发展,该项目将为K-12,代表性不足,本科生,该项目由CBET环境可持续发展计划和刺激竞争力研究的既定计划(EPSCoR)共同资助。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jie Cai其他文献

Benign prostatic hyperplasia after prostatic arterial embolization in a canine model: A 3T multiparametric MRI and whole-mount step-section pathology correlated longitudinal study
犬模型前列腺动脉栓塞后良性前列腺增生:3T 多参数 MRI 和整体阶梯病理学相关纵向研究
  • DOI:
    10.1002/jmri.25654
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Basen Li;Anhui Xu;Nan Wang;Xiangde Min;Zhaoyan Feng;Ming Deng;Liang Li;Jie Cai;Zhen Kang;Kehua Jiang;Dong Kuang;Liang Wang
  • 通讯作者:
    Liang Wang
Convective Air Drying Characteristics and Qualities of Non-fried Instant Noodles
非油炸方便面对流干燥特性及品质
  • DOI:
    10.1515/ijfe-2015-0108
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Man Zhou;Zhouyi Xiong;Jie Cai;Hanguo Xiong
  • 通讯作者:
    Hanguo Xiong
Five-alpha reductase inhibitors in men undergoing active surveillance for prostate cancer: impact on treatment and reclassification after 6 years follow-up
接受前列腺癌主动监测的男性中的五α还原酶抑制剂:对治疗和六年随访后重新分类的影响
  • DOI:
    10.1007/s00345-021-03644-2
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    A. Ashrafi;T. Shin;A. Marien;T. Clifford;S. Shoji;T. Iwata;A. Iwata;M. Oishi;S. Chopra;Jie Cai;O. Ukimura;D. Bahn;I. Gill;A. Abreu
  • 通讯作者:
    A. Abreu
A Numerical Investigation of an Abnormal Phenomenon of Stress Intensity Factor (SIF) in a Cracked T-Butt Joint Accounting for Welding Effect
裂纹T形对接接头中应力强度因子(SIF)异常现象的数值研究焊接效应的解释
  • DOI:
    10.1007/s11804-021-00199-x
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Matteo Schiaretti;Jie Cai;Xiaoli Jiang;Shengming Zhang;D. Schott
  • 通讯作者:
    D. Schott
Numerical simulation of fine particle liquid–solid flow in porous media based on LBM-IBM-DEM
基于LBM-IBM-DEM的多孔介质细颗粒液固流动数值模拟

Jie Cai的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

“重组型”CRISPR/Cas12a系统的核酸分子可视化原位检测技术研究
  • 批准号:
    JCZRYB202501007
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于核酸构象重编程与CRISPR/Cas12a的结核分枝杆菌高灵敏检测研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
噬菌体介导的CRISPR/Cas12a协同剪切平台用于多重活细菌的同时检测
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
肝癌液体活检新方法研究:无扩增的CRISPR-Cas12a归一化激活策略
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于CRISPR/Cas13快速联合检测呼吸道RNA病毒的研究与应用
  • 批准号:
    2025JJ90207
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于CRISPR-Cas系统的核酸分子检测研究
  • 批准号:
    2025JJ20018
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
类器官结合CRISPR-Cas9筛选:探究GPCR调控滋养层分化及其对先兆子痫的影响研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
探索通过LNP递送靶向TTR基因的CRISPR-Cas编辑器治疗遗传型转甲状腺素蛋白淀粉样的策略
  • 批准号:
    HDMZ25H020001
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
不对称RPA联合CRISPR/Cas12的一步法内禀机制解析及方法建立
  • 批准号:
    MS25C200074
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

CAREER: CAS-Climate: Addressing Climate Change Impacts on Urban Water Affordability
职业:CAS-气候:应对气候变化对城市水承受能力的影响
  • 批准号:
    2337668
  • 财政年份:
    2024
  • 资助金额:
    $ 50.8万
  • 项目类别:
    Continuing Grant
CAREER: CAS-Climate -- A modeling framework to understand the environmental and equity impacts of building decarbonization retrofits
职业:CAS-Climate——了解建筑脱碳改造对环境和公平影响的建模框架
  • 批准号:
    2339386
  • 财政年份:
    2024
  • 资助金额:
    $ 50.8万
  • 项目类别:
    Continuing Grant
CAREER: CAS- Climate -- Air-quality-related environmental justice impacts of decarbonization scenarios
职业:CAS-气候——脱碳情景与空气质量相关的环境正义影响
  • 批准号:
    2339462
  • 财政年份:
    2024
  • 资助金额:
    $ 50.8万
  • 项目类别:
    Continuing Grant
CAS-Climate: CAREER: A Unified Zero-Carbon-Driven Design Framework for Accelerating Power Grid Deep Decarbonization (ZERO-ACCELERATOR)
CAS-气候:职业:加速电网深度脱碳的统一零碳驱动设计框架(零加速器)
  • 批准号:
    2338158
  • 财政年份:
    2024
  • 资助金额:
    $ 50.8万
  • 项目类别:
    Continuing Grant
CAREER: CAS-Climate: Multiscale Data and Model Synthesis Informed Approach for Assessing Climate Resilience of Crop Production Systems
职业:CAS-气候:用于评估作物生产系统气候适应能力的多尺度数据和模型综合知情方法
  • 批准号:
    2339529
  • 财政年份:
    2024
  • 资助金额:
    $ 50.8万
  • 项目类别:
    Continuing Grant
CAREER: CAS-Climate: Forecast-informed Flexible Reservoir System Modeling Enabled by Artificial Intelligence Algorithms Using Subseasonal-to-Seasonal Hydroclimatological Forecasts
职业:CAS-气候:利用次季节到季节水文气候预测的人工智能算法实现基于预测的灵活水库系统建模
  • 批准号:
    2236926
  • 财政年份:
    2023
  • 资助金额:
    $ 50.8万
  • 项目类别:
    Continuing Grant
CAREER: CAS-Climate: Environmental Sustainability of Combined versus Separate Sewer Systems along the U.S. West Coast
职业:CAS-气候:美国西海岸联合下水道系统与独立下水道系统的环境可持续性
  • 批准号:
    2239602
  • 财政年份:
    2023
  • 资助金额:
    $ 50.8万
  • 项目类别:
    Continuing Grant
CAREER: CAS-Climate: Sustainable Design Principles for Emerging Photovoltaics
职业:CAS-气候:新兴光伏发电的可持续设计原则
  • 批准号:
    2350522
  • 财政年份:
    2023
  • 资助金额:
    $ 50.8万
  • 项目类别:
    Continuing Grant
CAREER: CAS-Climate: Sustainable Design Principles for Emerging Photovoltaics
职业:CAS-气候:新兴光伏发电的可持续设计原则
  • 批准号:
    2239755
  • 财政年份:
    2023
  • 资助金额:
    $ 50.8万
  • 项目类别:
    Continuing Grant
CAREER: CAS-Climate: Neighborhood-scale Assessment of the Air Quality Co-Benefits and Tradeoffs of Transportation Electrification
职业:CAS-气候:交通电气化空气质量协同效益和权衡的社区规模评估
  • 批准号:
    2239834
  • 财政年份:
    2023
  • 资助金额:
    $ 50.8万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了