CAREER: Optical-frequency electronics for measuring the fields of light guided on chips

职业:用于测量芯片上光导场的光频电子器件

基本信息

  • 批准号:
    2238575
  • 负责人:
  • 金额:
    $ 55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-06-01 至 2028-05-31
  • 项目状态:
    未结题

项目摘要

As light travels it creates oscillating electric and magnetic fields. These field oscillations are challenging to measure in time due to how quickly they fluctuate (e.g. visible light fields oscillate hundreds of trillions of times per second). In this work we will develop nanometer-scale antennas (one nanometer is one billionth of one meter) capable of capturing the fields of light inside optical waveguides, small glass channels for transporting light on a chip, as they oscillate in time. These waveguide-integrated antennas will be capable of measuring electric fields with a time resolution of less than one femtosecond (one millionth of one billionth of one second). Our work will provide researchers and engineers with full access to the information stored within the fields of light. This access could enable new technologies for enhanced optical sensing, or new forms of optical frequency electronics for high-speed computing and communications. Beyond the technical efforts of this program, we will pursue outreach and education efforts that span from local to global. We will develop interactive course materials based around executable textbook platforms that will be openly available to the public. We will actively contribute our expertise to public knowledge repositories such as Wikipedia. We will use publicly available services to host free and open copies of our manuscripts, data, and code before publication in academic journals. Finally, we will work with K-12 schools in rural Appalachia, where the PI is from, to deliver a series of hands-on workshops and seminars. These workshops and seminars will connect students there with our research, as well as science, technology and mathematics education more broadly. We will target school districts with some of the lowest college completion rates in the country (as low as 5% in some counties). Our efforts will help cultivate a more inclusive and vibrant research community for future generations. Chip-integrated frequency comb sources are developing rapidly. To leverage the reduction in size, cost, and complexity that these sources offer, compact, scalable, and ultrafast field-sensitive optical detectors are needed. We will develop waveguide-integrated petahertz-electronic devices that will enable all-on-chip few-cycle waveform control and field-resolved metrology. First, we will design, fabricate, and test waveguide-integrated nanoantenna-based detectors for the detection and stabilization of carrier-envelope phase (CEP). These detectors will deliver CEP-sensitive signal to noise ratios on the order of tens of dB at tens to hundreds of kilohertz resolution bandwidths, and we will demonstrate their ability to stabilize few-cycle frequency combs. Unlike f-2f techniques, the methods explored here will circumvent the need for nonlinear conversion and will be coupled to standard waveguide materials such as silicon nitride just tens of microns in length. Second, we will develop waveguide-integrated nanoantenna detectors for field-resolved sampling of arbitrary optical waveform. We will use these field-sampling devices to demonstrate label-free molecular detection, and to sample nonlinear light-matter interaction dynamics. We will study how to leverage optimized device designs, signal readout multiplexing, waveguide coupling, and excitation methods to achieve few- to single-shot waveform and CEP detection. Applications will be far-reaching. The devices developed in this program will enable studies of linear and nonlinear light-matter interaction dynamics in complex media, such as exciton dynamics important to solar energy conversion or electron dynamics that result in extreme nonlinearities. Applications include label-free molecular detection, and the stabilization of on-chip frequency combs for atomic clocks or ranging instruments.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
光在传播时会产生振荡的电场和磁场。这些场振荡由于它们波动的速度而难以及时测量(例如,可见光场每秒振荡数百万亿次)。 在这项工作中,我们将开发纳米尺度的天线(一纳米是十亿分之一米),能够捕获光波导内的光场,这些光波导是用于在芯片上传输光的小玻璃通道,因为它们在时间上振荡。 这些波导集成天线将能够测量电场,时间分辨率小于一飞秒(一秒的十亿分之一的百万分之一)。 我们的工作将为研究人员和工程师提供充分访问存储在光场中的信息的机会。 这种访问可以实现增强光学传感的新技术,或用于高速计算和通信的新形式的光频电子器件。 除了该计划的技术努力之外,我们还将继续从地方到全球的推广和教育工作。 我们将围绕可执行的教科书平台开发交互式课程材料,并向公众开放。 我们将积极为维基百科等公共知识库贡献我们的专业知识。 我们将使用公共服务来托管我们的手稿,数据和代码的免费和开放副本,然后在学术期刊上发表。最后,我们将与PI所在的阿巴拉契亚农村地区的K-12学校合作,举办一系列实践讲习班和研讨会。 这些讲习班和研讨会将学生与我们的研究,以及更广泛的科学,技术和数学教育联系起来。我们将针对全国大学毕业率最低的学区(一些县低至5%)。 我们的努力将有助于为后代培养一个更具包容性和充满活力的研究社区。 单片集成梳状频率源发展迅速。 为了利用这些源提供的尺寸、成本和复杂性的减小,需要紧凑、可扩展和超快的场敏感光学检测器。我们将开发波导集成的拍赫兹电子器件,使所有芯片上的几个周期的波形控制和现场分辨计量。 首先,我们将设计,制造和测试基于波导集成纳米天线的检测器,用于载波包络相位(CEP)的检测和稳定。 这些探测器将提供CEP敏感的信噪比在几十到几百千赫的分辨率带宽的几十dB的顺序,我们将证明他们的能力,稳定几个周期的频率梳。 与f-2f技术不同,这里探索的方法将避免非线性转换的需要,并将耦合到标准的波导材料,如长度仅为几十微米的氮化硅。 其次,我们将开发波导集成纳米天线探测器,用于任意光波形的场分辨采样。 我们将使用这些现场采样设备来演示无标记分子检测,并对非线性光-物质相互作用动力学进行采样。 我们将研究如何利用优化的器件设计、信号读出复用、波导耦合和激发方法来实现少到单次激发波形和CEP检测。 应用将是深远的。 该计划中开发的设备将使复杂介质中的线性和非线性光物质相互作用动力学的研究成为可能,例如对太阳能转换重要的激子动力学或导致极端非线性的电子动力学。 该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Phillip Keathley其他文献

Phillip Keathley的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

CAREER: Ultralow phase noise signal generation using Kerr-microresonator optical frequency combs
职业:使用克尔微谐振器光学频率梳生成超低相位噪声信号
  • 批准号:
    2340973
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
Ultra-scalable clock and carrier sychronisation for optical and wireless networks using sequentially-locked optical frequency combs
使用顺序锁定光学频率梳实现光学和无线网络的超可扩展时钟和载波同步
  • 批准号:
    10089417
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Collaborative R&D
Broadband background canceling using optical frequency comb and application
利用光学频率梳消除宽带背景及应用
  • 批准号:
    23H01875
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
SBIR Phase II: Chip-Scale Optical Frequency Standards
SBIR 第二阶段:芯片级光频率标准
  • 批准号:
    2322392
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Cooperative Agreement
Time-resolved measurements of single-shot XFEL pulses using frequency resolved optical gating
使用频率分辨光选通对单次 XFEL 脉冲进行时间分辨测量
  • 批准号:
    23K04624
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Optical fiber rangefinder dynamically updating resolution and dynamic range by optical frequency modulation
光纤测距仪通过光学频率调制动态更新分辨率和动态范围
  • 批准号:
    23K13342
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Establishing the design and development of novel crystalline-amorphous hybrid optical coatings for precision measurements and frequency standards
建立用于精密测量和频率标准的新型晶体-非晶混合光学涂层的设计和开发
  • 批准号:
    ST/X004856/1
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Research Grant
Precision Rulers for the Visible - Chip Scale Optical Frequency Combs
可见光精密尺 - 芯片级光学频率梳
  • 批准号:
    DE230100964
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Discovery Early Career Researcher Award
Establishing the design and development of novel crystalline-amorphous hybrid optical coatings for precision measurements and frequency standards
建立用于精密测量和频率标准的新型晶体-非晶混合光学涂层的设计和开发
  • 批准号:
    ST/X004740/1
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Research Grant
Optical metrology using optical frequency combs and hollow core fibres
使用光学频率梳和空心光纤的光学计量
  • 批准号:
    2889068
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了