CAREER: Fine-Grained Complexity and Algorithms for Structured Linear Equations and Linear Programs

职业:结构化线性方程和线性程序的细粒度复杂性和算法

基本信息

  • 批准号:
    2238682
  • 负责人:
  • 金额:
    $ 49.93万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-02-01 至 2028-01-31
  • 项目状态:
    未结题

项目摘要

Abstract:Linear equations and linear programs are ubiquitous in computational mathematics, engineering, machine learning, and data science, and they are powerful primitives for developing various algorithmic paradigms. Unfortunately, the currently best-known algorithms for solving general linear equations and linear programs run in super-quadratic time, which can be prohibitively slow for modern large-scale datasets. In practice, however, many linear equations and programs exhibit additional structures that enable significantly faster solvers. This project aims (1) to identify and classify structures that can accelerate solving linear equations and linear programs and those that can not and (2) to understand how fast we can solve general linear equations and linear programs. Another major part of this project is to provide multi-disciplinary education and research training for graduate, undergraduate, and high school students and to broaden the participation of women and underrepresented students in STEM fields. This project aims to study fine-grained complexity and algorithms for structured linear equations and structured linear programs and focuses on three major goals. The first goal is to establish ``equivalent`` classes for structured linear equations and linear programs so that if we can solve one problem fast, we can immediately solve all the problems in the same equivalence class equally fast. The second goal is to develop efficient solvers for structured linear equations and linear programs that arise commonly from practice. Examples include generalized Laplacians with additional geometric structures, dense instances such as kernel matrices, and random instances. Finally, the third goal is to better understand the time complexity of general linear equations and linear programs. For example, can we solve general linear equations and linear programs faster than matrix multiplication? What are the runtime lower bounds under the Strong Exponential Time Hypothesis?This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
翻译后摘要:线性方程组和线性程序是无处不在的计算数学,工程,机器学习和数据科学,他们是强大的原语开发各种算法的范例。不幸的是,目前最著名的求解一般线性方程和线性规划的算法都是在超二次时间内运行的,这对于现代大规模数据集来说可能非常慢。然而,在实践中,许多线性方程和程序展示了额外的结构,使求解器的速度明显更快。这个项目的目的是(1)识别和分类的结构,可以加速解决线性方程和线性规划和那些不能和(2)了解我们可以多快解决一般线性方程和线性规划。该项目的另一个主要部分是为研究生、本科生和高中生提供多学科教育和研究培训,并扩大妇女和代表性不足的学生在STEM领域的参与。本计画主要研究结构化线性方程式与结构化线性程式之细粒度复杂度与演算法,并著重于三个主要目标。第一个目标是为结构化线性方程和线性规划建立“等价”类,这样如果我们能快速解决一个问题,我们就能立即同样快速地解决同一等价类中的所有问题。第二个目标是为结构化线性方程组和线性规划开发有效的求解器,这些线性方程组和线性规划通常来自实践。例子包括具有额外几何结构的广义拉普拉斯算子、稠密实例(如核矩阵)和随机实例。最后,第三个目标是更好地理解一般线性方程和线性规划的时间复杂度。例如,我们能比矩阵乘法更快地求解一般线性方程组和线性规划吗?强指数时间假设下的运行时间下限是什么?该奖项反映了NSF的法定使命,并被认为是值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Efficient 1-Laplacian Solvers for Well-Shaped Simplicial Complexes: Beyond Betti Numbers and Collapsing Sequences
用于形状良好的单纯复形的高效 1-拉普拉斯求解器:超越贝蒂数和折叠序列
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peng Zhang其他文献

Direct Observation of Axial Dynamics of Particle Manipulation With Weber Self-Accelerating Beams
用韦伯自加速梁直接观察粒子操纵的轴向动力学
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    7.5
  • 作者:
    Sha An;Tong Peng;Shaohui Yan;Baoli Yao;Peng Zhang
  • 通讯作者:
    Peng Zhang
Deterioration of hematopoietic autophagy is linked to osteoporosis
造血自噬的恶化与骨质疏松症有关
  • DOI:
    10.1111/acel.13114
  • 发表时间:
    2020-03
  • 期刊:
  • 影响因子:
    7.8
  • 作者:
    Ye Yuan;Yixuan Fang;Lingjiang Zhu;Yue Gu;Lei Li;Jiawei Qian;Ruijin Zhao;Peng Zhang;Jian Li;Hui Zhang;Na Yuan;Suping Zhang;Qianhong Ma;Jianrong Wang;Youjia Xu
  • 通讯作者:
    Youjia Xu
Compiling Cross-Language Network Programs Into Hybrid Data Plane
将跨语言网络程序编译到混合数据平面中
  • DOI:
    10.1109/tnet.2021.3132303
  • 发表时间:
    2022-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hao Li;Peng Zhang;Guangda Sun;Changhao Wu;Chengchen Hu;Danfeng Shan;Tian Pan;Qiang Fu
  • 通讯作者:
    Qiang Fu
A Novel Multi-feature Joint Learning Framework for Multi-label Facial Expression Recognition
一种新颖的多标签面部表情识别多特征联合学习框架
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Wanzhao Li;Mingyuan Luo;Peng Zhang;Wei Huang
  • 通讯作者:
    Wei Huang
A residual graph convolutional network for setting initial flow field in computational fluid dynamics simulations
用于在计算流体动力学模拟中设置初始流场的残差图卷积网络
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiaoyuan Zhang;Guopeng Sun;Peng Zhang;Yueqing Wang;Jian Zhang;Liang Deng;Jie Lin;Jianqiang Chen
  • 通讯作者:
    Jianqiang Chen

Peng Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peng Zhang', 18)}}的其他基金

NSF Convergence Accelerator–Track D: AI-Grid: AI-Enabled, Provably Resilient, Programmable Networked Microgrids
NSF 融合加速器 - 轨道 D:人工智能网格:人工智能支持、可证明弹性、可编程网络微电网
  • 批准号:
    2134840
  • 财政年份:
    2021
  • 资助金额:
    $ 49.93万
  • 项目类别:
    Cooperative Agreement
CRII:SCH:RUI: A Digital Identity System for Accelerating Medical Communications within Rare Disease Communities
CRII:SC​​H:RUI:用于加速罕见疾病社区内医疗通信的数字身份系统
  • 批准号:
    2153232
  • 财政年份:
    2021
  • 资助金额:
    $ 49.93万
  • 项目类别:
    Standard Grant
CRII:SCH:RUI: A Digital Identity System for Accelerating Medical Communications within Rare Disease Communities
CRII:SC​​H:RUI:用于加速罕见疾病社区内医疗通信的数字身份系统
  • 批准号:
    2105145
  • 财政年份:
    2021
  • 资助金额:
    $ 49.93万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator-Track D: AI-Enabled Provably Resilient Networked Microgrids
NSF 融合加速器 - 轨道 D:人工智能支持的可证明弹性的网络微电网
  • 批准号:
    2040599
  • 财政年份:
    2020
  • 资助金额:
    $ 49.93万
  • 项目类别:
    Standard Grant
SBIR Phase I: A Cloud-based, AI-enabled ECG Analysis Platform for More Efficient Arrhythmia Detection
SBIR 第一阶段:基于云、支持人工智能的心电图分析平台,可更有效地检测心律失常
  • 批准号:
    2025951
  • 财政年份:
    2020
  • 资助金额:
    $ 49.93万
  • 项目类别:
    Standard Grant
PFI-TT: Development of a visual sensor to non-invasively monitor biodegradable magnesium alloy implants for biomedical applications
PFI-TT:开发视觉传感器,以非侵入性方式监测生物医学应用中的可生物降解镁合金植入物
  • 批准号:
    2016475
  • 财政年份:
    2020
  • 资助金额:
    $ 49.93万
  • 项目类别:
    Standard Grant
Enabling Reliable Networked Microgrids for Distribution Grid Resiliency
实现可靠的联网微电网,提高配电网的弹性
  • 批准号:
    2002897
  • 财政年份:
    2019
  • 资助金额:
    $ 49.93万
  • 项目类别:
    Standard Grant
US Ignite: Focus Area 1: SD2N: Software-Defined Urban Distribution Network for Smart Cities
US Ignite:重点领域 1:SD2N:智慧城市的软件定义城市配电网络
  • 批准号:
    2006828
  • 财政年份:
    2019
  • 资助金额:
    $ 49.93万
  • 项目类别:
    Standard Grant
SCC: Empowering Smart and Connecticut Communities through Programmable Community Microgrids
SCC:通过可编程社区微电网增强智能和康涅狄格社区的能力
  • 批准号:
    2018492
  • 财政年份:
    2019
  • 资助金额:
    $ 49.93万
  • 项目类别:
    Standard Grant
SCC: Empowering Smart and Connecticut Communities through Programmable Community Microgrids
SCC:通过可编程社区微电网增强智能和康涅狄格社区的能力
  • 批准号:
    1831811
  • 财政年份:
    2018
  • 资助金额:
    $ 49.93万
  • 项目类别:
    Standard Grant

相似海外基金

AIGMob: Conditional Generative AI for Fine-grained Urban Mobility Simulation
AIGMob:用于细粒度城市交通模拟的条件生成人工智能
  • 批准号:
    24K02996
  • 财政年份:
    2024
  • 资助金额:
    $ 49.93万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Fine-grained music source separation with deep learning models
利用深度学习模型进行细粒度音乐源分离
  • 批准号:
    10107090
  • 财政年份:
    2024
  • 资助金额:
    $ 49.93万
  • 项目类别:
    Collaborative R&D
RII Track-4:NSF: Federated Analytics Systems with Fine-grained Knowledge Comprehension: Achieving Accuracy with Privacy
RII Track-4:NSF:具有细粒度知识理解的联合分析系统:通过隐私实现准确性
  • 批准号:
    2327480
  • 财政年份:
    2024
  • 资助金额:
    $ 49.93万
  • 项目类别:
    Standard Grant
Collaborative Research: SII-NRDZ: SweepSpace: Enabling Autonomous Fine-Grained Spatial Spectrum Sensing and Sharing
合作研究:SII-NRDZ:SweepSpace:实现自主细粒度空间频谱感知和共享
  • 批准号:
    2348589
  • 财政年份:
    2024
  • 资助金额:
    $ 49.93万
  • 项目类别:
    Standard Grant
CAREER: Distances and matchings under the lens of fine-grained complexity
职业:细粒度复杂性镜头下的距离和匹配
  • 批准号:
    2337901
  • 财政年份:
    2024
  • 资助金额:
    $ 49.93万
  • 项目类别:
    Continuing Grant
SHF: Small: Domain-Specific FPGAs to Accelerate Unrolled DNNs with Fine-Grained Unstructured Sparsity and Mixed Precision
SHF:小型:特定领域 FPGA 加速具有细粒度非结构化稀疏性和混合精度的展开 DNN
  • 批准号:
    2303626
  • 财政年份:
    2023
  • 资助金额:
    $ 49.93万
  • 项目类别:
    Standard Grant
Collaborative Research: Efficacy and Durability of Microbially Induced Desaturation to Mitigate Liquefaction in Fine-grained Soils
合作研究:微生物诱导去饱和缓解细粒土壤液化的功效和持久性
  • 批准号:
    2242227
  • 财政年份:
    2023
  • 资助金额:
    $ 49.93万
  • 项目类别:
    Standard Grant
Energy-efficient Computing Through Fine-grained Energy Accounting
通过细粒度能源核算实现节能计算
  • 批准号:
    2883684
  • 财政年份:
    2023
  • 资助金额:
    $ 49.93万
  • 项目类别:
    Studentship
Towards Real-Time Fine-Grained Tracking in Distributed Large-Scale RF Tag Systems
实现分布式大规模射频标签系统中的实时细粒度跟踪
  • 批准号:
    2225337
  • 财政年份:
    2023
  • 资助金额:
    $ 49.93万
  • 项目类别:
    Standard Grant
CAREER: Towards sensing and understanding fine-grained body postures in daily life using intelligent wearables with acoustic sensing
职业:利用具有声学传感功能的智能可穿戴设备来感知和理解日常生活中细粒度的身体姿势
  • 批准号:
    2239569
  • 财政年份:
    2023
  • 资助金额:
    $ 49.93万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了