CAREER: Automated physics-based distillation of coherent structures and mechanisms in unsteady and turbulent flows
职业:基于物理的自动蒸馏非定常和湍流中的相干结构和机制
基本信息
- 批准号:2238770
- 负责人:
- 金额:$ 51.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-12-01 至 2027-11-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Identifying and understanding the fundamental mechanisms that sustain unsteady and turbulent flows is important for ensuring accurate prediction and effective optimization and control across a broad range of applications, such as for reducing drag on aerodynamic vehicles, improving efficiency in wind energy harvesting devices, and improving patient outcomes via cardiovascular flows. While we have a good understanding of such mechanisms for simple flows, new tools will be required to obtain similar levels of understanding for a broader range of applications of real-world relevance. This project will develop methods that enable such mechanisms to be identified in an automated and unambiguous manner, with minimal data and computational requirements. These technical developments will be coupled with educational and outreach initiatives involving the research community, university students in coursework and research, K-12 students, and members of local community groups on Chicago's South Side.The proposed research will develop two central ideas to address the challenge identified above, with an overall goal of developing a methodology to isolate dominant coherent structures and mechanisms in an unambiguous, automated, and computationally efficient manner. The first idea involves applying sparsity-promoting methods to physics-based modeling tools to uncover minimal-physics models without needing the human insight and/or trial-and-error that would otherwise be required. The second idea considers methods to approximate the behavior of these mechanisms using analytic rather than numerical methods, leveraging ideas from wave-packet pseudo-spectral theory. This formulation in turn enables additional analysis methods conducive to studying a broader class of mechanisms, in particular allowing for highly nonlinear behavior to be modeled. To demonstrate their utility, these methods will be applied on a range of fluid flows, including incompressible and compressible parallel shear flows, flows with secondary mean flow components induced by sidewalls, and cardiovascular flows with more complex geometries. An improved ability to identify and manipulate the coherent structures that exist within turbulent flows can benefit a broad range of applications, with the potential to decrease friction drag on air, sea, and ground transport vehicles, increase the efficiency of wind turbines, and enhance understanding and treatment of cardiovascular diseases.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
识别和理解维持不稳定和湍流的基本机制对于确保在广泛的应用中进行准确的预测和有效的优化和控制非常重要,例如减少空气动力学车辆的阻力,提高风能收集设备的效率,以及通过心血管流动改善患者的预后。虽然我们对简单流程的这种机制有很好的理解,但需要新的工具来获得对更广泛的现实世界相关应用的类似理解。该项目将开发方法,使这些机制能够以自动和明确的方式确定,最低限度的数据和计算要求。这些技术发展将与教育和推广活动相结合,这些活动涉及研究界、课程和研究中的大学生、K-12学生以及芝加哥南区当地社区团体的成员。拟议的研究将发展两个中心思想,以应对上述挑战,其总体目标是开发一种方法,以明确、自动化和计算有效的方式隔离主要的相干结构和机制。第一个想法涉及将稀疏性提升方法应用于基于物理的建模工具,以揭示最小物理模型,而不需要人类的洞察力和/或试错。第二个想法考虑的方法来近似的行为,这些机制使用分析,而不是数值方法,利用波包伪谱理论的想法。这种公式反过来又使额外的分析方法有利于研究更广泛的机制,特别是允许高度非线性行为进行建模。为了证明它们的实用性,这些方法将被应用于一系列的流体流动,包括不可压缩和可压缩的平行剪切流,流动与二次平均流分量引起的侧壁,和心血管流动与更复杂的几何形状。识别和操纵湍流内存在的相干结构的改进的能力可以有益于广泛的应用,具有减少空气、海洋和地面运输车辆上的摩擦阻力,增加风力涡轮机的效率,并增强对心血管疾病的了解和治疗。该奖项反映了NSF的法定使命,并通过使用基金会的学术价值和更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Scott Dawson其他文献
Scott Dawson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Research on Automated Formative Feedback of Problem-Solving Strategy Writing in Introductory Physics using Natural Language Processing
利用自然语言处理的物理导论中解题策略写作的自动形成反馈研究
- 批准号:
2300645 - 财政年份:2023
- 资助金额:
$ 51.63万 - 项目类别:
Standard Grant
A placenta-based strategy for improved clinical prediction of fetal growth trajectory using automated image analysis of placental morphology and vascularity
基于胎盘的策略,使用胎盘形态和血管分布的自动图像分析来改进胎儿生长轨迹的临床预测
- 批准号:
10512601 - 财政年份:2022
- 资助金额:
$ 51.63万 - 项目类别:
Quantitative magnetic resonance imaging and automated textural radiomics for assessment of human placenta accreta spectrum
用于评估人类植入性胎盘谱的定量磁共振成像和自动纹理放射组学
- 批准号:
10269935 - 财政年份:2020
- 资助金额:
$ 51.63万 - 项目类别:
Quantitative magnetic resonance imaging and automated textural radiomics for assessment of human placenta accreta spectrum
用于评估人类植入性胎盘谱的定量磁共振成像和自动纹理放射组学
- 批准号:
10693182 - 财政年份:2020
- 资助金额:
$ 51.63万 - 项目类别:
Quantitative magnetic resonance imaging and automated textural radiomics for assessment of human placenta accreta spectrum
用于评估人类植入性胎盘谱的定量磁共振成像和自动纹理放射组学
- 批准号:
10478201 - 财政年份:2020
- 资助金额:
$ 51.63万 - 项目类别:
Robust IMPT with automated beam orientation and scanning spot optimization
具有自动光束定向和扫描点优化功能的稳健 IMPT
- 批准号:
10762796 - 财政年份:2019
- 资助金额:
$ 51.63万 - 项目类别:
Robust IMPT with automated beam orientation and scanning spot optimization
具有自动光束定向和扫描点优化功能的稳健 IMPT
- 批准号:
10112842 - 财政年份:2019
- 资助金额:
$ 51.63万 - 项目类别:
Automated data curation to ensure model credibility in the Vascular Model Repository
自动数据管理以确保血管模型存储库中模型的可信度
- 批准号:
10175029 - 财政年份:2019
- 资助金额:
$ 51.63万 - 项目类别:
Automated data curation to ensure model credibility in the Vascular Model Repository
自动数据管理以确保血管模型存储库中模型的可信度
- 批准号:
10016840 - 财政年份:2019
- 资助金额:
$ 51.63万 - 项目类别: