A fully automated PET radiomics framework
全自动 PET 放射组学框架
基本信息
- 批准号:10458241
- 负责人:
- 金额:$ 49.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-06 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAmerican College of Radiology Imaging NetworkAnatomyBiological MarkersBiologyCause of DeathCharacteristicsClinicalClinical TrialsComputer softwareDataData SetDiscipline of Nuclear MedicineDiseaseEngineeringEvaluationGoalsGoldHeterogeneityImageKnowledgeLeadMalignant NeoplasmsMalignant neoplasm of thoraxManualsMeasurementMeasuresMedicalMedical OncologistMetabolicMethodsMolecularMulticenter TrialsNoiseNon-Small-Cell Lung CarcinomaOutcomePET/CT scanPatientsPhysicsPositron-Emission TomographyPrediction of Response to TherapyProceduresProcessProgression-Free SurvivalsPropertyProtocols documentationQuality of lifeRadiation Therapy Oncology GroupReaderRegimenReproducibilityResolutionRetrospective StudiesRoleSmoking HistoryTechniquesTimeToxic effectTrainingTranslatingTreatment Costbasebiomarker developmentbiomarker discoverycancer imagingchemoradiationclinical applicationclinical translationdeep learningearly detection biomarkersefficacy evaluationfluorodeoxyglucose positron emission tomographyimaging modalityimaging scientistimprovedin vivomortalitymultidisciplinarynoveloptimal treatmentspatient orientedpersonalized medicineprecision medicineprognostic valuequantitative imagingradiologistradiomicsreconstructionresponsesimulationtheoriestumor
项目摘要
Summary
The overall goal of this proposal is to develop a fully automated PET radiomics framework and evaluate the
efficacy of PET radiomic features (RFs) derived from this framework in predicting therapy response in patients
with stage III non-small cell lung cancer (NSCLC). Radiomics is showing exciting promise in deriving biomarkers
for several diseases. The potential to measure and evaluate the efficacy of radiomic features derived from PET
for early prediction of therapy response is highly impactful since PET probes the functional characteristics of the
tumor, where changes are manifested sooner in comparison to anatomical changes. However, PET images have
high noise and limited resolution, which leads to inaccurate and imprecise RF measurements that then have
limited clinical value. Previously we have developed techniques to optimize quantitative imaging methods and
shown that these can help estimate more reliable quantitative metrics leading to better predictive ability with
these metrics. Building on these past studies and by combining concepts from imaging physics, statistical
inference theory, deep learning, we propose to develop methods that accurately and precisely estimate RFs
from PET. These methods will include a fully automated PET segmentation method that will enable reliable
delineation of tumor boundaries using a practical approach. Next, a no-gold-standard (NGS) evaluation
technique will be developed to optimize RF quantification protocols. This technique will provide a mechanism for
precise measurement of RFs from PET images without access to the ground truth RF value. The methods will
be rigorously validated in the context of measuring radiomics features in patients with NSCLC using a
combination of realistic simulations, physical phantom studies and existing patient data. Select RFs will then be
retrospectively evaluated on predicting therapy response using existing data the ACRIN 6697 longitudinal clinical
trial in patients with stage III NSCLC. A strong multidisciplinary team has been assembled for this project,
consisting of an imaging scientist, clinical nuclear-medicine radiologists, medical oncologist with expertise in
biomarker development for thoracic malignancies and biology of NSCLC, biostatistician, and a medical physicist.
The proposed methods are poised to have a strong impact on PET radiomics by enabling measurement of
precise and accurate RFs, and by facilitating the clinical translation of PET radiomics. The impact is strengthened
as we investigate the predictive ability of the PET RFs in patients with stage III NSCLC, a leading cause of death
with low overall survival, and with an important and timely need for improved personalized therapy regimens.
Further, the methods developed in this project are general and potentially impact precision-medicine approaches
for other cancers as well as other diseases where PET imaging has a clinical role.
总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Abhinav K Jha其他文献
Abhinav K Jha的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Abhinav K Jha', 18)}}的其他基金
Ultra-Low Count Quantitative SPECT for Alpha-Particle Therapies
用于 α 粒子治疗的超低计数定量 SPECT
- 批准号:
10446871 - 财政年份:2022
- 资助金额:
$ 49.29万 - 项目类别:
Ultra-Low Count Quantitative SPECT for Alpha-Particle Therapies
用于 α 粒子治疗的超低计数定量 SPECT
- 批准号:
10704042 - 财政年份:2022
- 资助金额:
$ 49.29万 - 项目类别:
A no-gold-standard framework to objectively evaluate quantitative imaging methods with patient data
利用患者数据客观评估定量成像方法的非金标准框架
- 批准号:
10375582 - 财政年份:2021
- 资助金额:
$ 49.29万 - 项目类别:
A no-gold-standard framework to objectively evaluate quantitative imaging methods with patient data
利用患者数据客观评估定量成像方法的非金标准框架
- 批准号:
10553677 - 财政年份:2021
- 资助金额:
$ 49.29万 - 项目类别:
A framework to quantify and incorporate uncertainty for ethical application of AI-based quantitative imaging in clinical decision making
量化和纳入基于人工智能的定量成像在临床决策中的伦理应用的不确定性的框架
- 批准号:
10599754 - 财政年份:2021
- 资助金额:
$ 49.29万 - 项目类别:
A no-gold-standard framework to objectively evaluate quantitative imaging methods with patient data
利用患者数据客观评估定量成像方法的非金标准框架
- 批准号:
10185997 - 财政年份:2021
- 资助金额:
$ 49.29万 - 项目类别:
相似海外基金
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 49.29万 - 项目类别:
Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 49.29万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 49.29万 - 项目类别:
Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 49.29万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 49.29万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 49.29万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 49.29万 - 项目类别:
Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 49.29万 - 项目类别:
Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
- 批准号:
23K00129 - 财政年份:2023
- 资助金额:
$ 49.29万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
- 批准号:
2883985 - 财政年份:2023
- 资助金额:
$ 49.29万 - 项目类别:
Studentship