CAREER: Tough Architected Concrete Materials: Bio-inspired Design, Manufacturing, and Mechanics
职业:坚韧的建筑混凝土材料:仿生设计、制造和力学
基本信息
- 批准号:2238992
- 负责人:
- 金额:$ 62.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-11-01 至 2028-10-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This Faculty Career Development (CAREER) award will support fundamental research on the design and fracture behavior of concrete with purposeful arrangements known as architected materials. Concrete is the most common human-made commodity used to build civil and energy infrastructure. However, without reinforcement, concrete suffers from low resistance to cracking and abrupt failure. To improve the shortcomings in mechanical response of cement-based materials, this project will focus on understanding and engineering stronger architected concrete for use in critical civil infrastructure and resilient structural applications. By applying concepts from naturally occurring strong materials such as mother-of-pearl (nacre) and bone that contain modest constituents, new types of concrete composites will be engineered with enhanced mechanical properties, superior to everyday unreinforced concrete counterparts. Through the design and analysis of novel construction materials using a laser process and advanced additive manufacturing, this project supports new applications of stronger and more damage-resilient infrastructure components that can enhance public safety and prosperity. The project will combine experimentation, computational modeling, and analytical approaches to create new methods for studying and designing these materials. Integration of research with educational and outreach activities, including (i) software development, (ii) additive manufacturing of concrete canoe for competition, (iii) development of a bio-inspired design course module, and (iv) participation in the bilingual Día de La Ciencia/Science Day program, will facilitate the use, adoption, and education among engineers, users, and students.The goal of this project is to understand and engineer the fracture behavior of architected concrete inspired by the brick-and-mortar arrangement of nacre and tubular arrangement of osteons in cortical bone. The research program will inform a new understanding of hypothesized toughening mechanisms from biological materials for the design, fabrication, and engineering of unreinforced concrete with enhanced ductility and fracture toughness benchmarked against ordinary and fiber-reinforced counterparts. To achieve these outcomes, the research integrates the following objectives: (i) study the underlying toughening mechanisms in natural materials and develop bio-inspired principles for design of synthetic counterparts and engineering the formulations of hard cementitious and soft hyperelastic constituents, (ii) create efficient manufacturing processes that enable fabrication of morphologically tailored hard-soft multi-material assemblies with purposeful internal defects, (iii) develop research and educational software and toolpath algorithms for additive processes that advance the design and fabrication, (iv) develop suitable experimentation for examining fracture toughness and strength of the architected materials and hard-soft constituents’ interfaces, and (v) develop a numerically robust constitutive framework for modeling fracture behavior in architected assemblies of soft and hard materials. The framework will utilize the phase-field approach to capture crack propagation within the bulk of the soft and hard materials, supplemented with a cohesive-zone model for the interfaces. The project will develop a foundation for understanding, engineering, and predicting the mechanical performance of tough architected composites and will generate new research avenues and design possibilities for crack-resilient applications. The project will allow the PI to advance the knowledge base in fracture mechanics and establish his long-term career in design and advanced manufacturing.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个教师职业发展(CAREER)奖将支持混凝土的设计和断裂行为的基础研究,有目的的安排被称为建筑材料。混凝土是用于建设民用和能源基础设施的最常见的人造商品。然而,没有钢筋,混凝土遭受低抗裂性和突然破坏。为了改善水泥基材料机械响应的缺点,该项目将重点了解和设计更坚固的建筑混凝土,用于关键民用基础设施和弹性结构应用。通过应用天然存在的坚固材料的概念,如珍珠母(珍珠层)和含有适度成分的骨,新型混凝土复合材料将被设计成具有增强的机械性能,比日常的非钢筋混凝土同类材料更优越上级。通过使用激光工艺和先进的增材制造来设计和分析新型建筑材料,该项目支持更强大、更具破坏弹性的基础设施组件的新应用,从而提高公共安全和繁荣。该项目将结合联合收割机实验,计算建模和分析方法,以创建研究和设计这些材料的新方法。将研究与教育和推广活动相结合,包括(i)软件开发,(ii)混凝土独木舟的增材制造,(iii)生物灵感设计课程模块的开发,以及(iv)参与双语Día de La Cietro/科学日计划,将促进工程师,用户,这个项目的目标是理解和设计建筑混凝土的断裂行为,其灵感来自于珍珠层的砖和砂浆排列和皮质骨中骨单位的管状排列。该研究计划将为生物材料的假设增韧机制提供新的理解,用于非钢筋混凝土的设计,制造和工程,具有增强的延展性和断裂韧性,以普通和纤维增强的对应物为基准。为了实现这些成果,研究整合了以下目标:(i)研究天然材料中潜在的增韧机制,并开发用于设计合成对应物和工程设计硬水泥和软超弹性成分的配方的生物启发原理,(ii)创建有效的制造工艺,使得能够制造具有有目的的内部缺陷的形态定制的硬-软多材料组件,(iii)开发用于推进设计和制造的增材工艺的研究和教育软件以及工具路径算法,(iv)开发用于检查结构化材料和硬-软组分界面的断裂韧性和强度的合适实验,以及(v)开发用于模拟软材料和硬材料的结构化组件中的断裂行为的数值鲁棒本构框架。该框架将利用相场方法来捕获软材料和硬材料的大部分内的裂纹扩展,并辅之以界面的粘聚区模型。该项目将为理解,工程和预测坚韧建筑复合材料的机械性能奠定基础,并将为裂纹弹性应用产生新的研究途径和设计可能性。该项目将使PI能够推进断裂力学的知识基础,并在设计和先进制造方面建立长期的职业生涯。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Reza Moini其他文献
Modernization process and fertility change in pre- and post-Islamic Revolution of Iran
- DOI:
10.1007/bf01255688 - 发表时间:
1995-03-01 - 期刊:
- 影响因子:1.500
- 作者:
Ali A. Paydarfar;Reza Moini - 通讯作者:
Reza Moini
Tough double-bouligand architected concrete enabled by robotic additive manufacturing
由机器人增材制造实现的坚韧双层波纹架构混凝土
- DOI:
10.1038/s41467-024-51640-y - 发表时间:
2024-08-29 - 期刊:
- 影响因子:15.700
- 作者:
Arjun Prihar;Shashank Gupta;Hadi S. Esmaeeli;Reza Moini - 通讯作者:
Reza Moini
Mechanical response of small-scale 3D-printed steel-mortar composite beams
小型 3D 打印钢-砂浆复合梁的力学响应
- DOI:
10.1016/j.cemconcomp.2024.105795 - 发表时间:
2024-11-01 - 期刊:
- 影响因子:13.100
- 作者:
Fabian B. Rodriguez;Reza Moini;Shubham Agrawal;Christopher S. Williams;Pablo D. Zavattieri;Jan Olek;Jeffrey P. Youngblood;Amit H. Varma - 通讯作者:
Amit H. Varma
Perspectives in architected infrastructure materials
- DOI:
10.21809/rilemtechlett.2023.183 - 发表时间:
2024-01 - 期刊:
- 影响因子:0
- 作者:
Reza Moini - 通讯作者:
Reza Moini
Coupled large deformation phase-field and cohesive zone model for crack propagation in hard-soft multi-materials
用于软硬多材料中裂纹扩展的耦合大变形相场和内聚区模型
- DOI:
10.1016/j.jmps.2024.106016 - 发表时间:
2025-03-01 - 期刊:
- 影响因子:6.000
- 作者:
Aimane Najmeddine;Shashank Gupta;Reza Moini - 通讯作者:
Reza Moini
Reza Moini的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Reza Moini', 18)}}的其他基金
Two-component Robotic Extrusion Additive Manufacturing of Concrete Structures: Silicone-solution Phases and Fiber Distributions for Functionally Graded Materials
混凝土结构的双组分机器人挤压增材制造:功能梯度材料的有机硅溶液相和纤维分布
- 批准号:
2217985 - 财政年份:2022
- 资助金额:
$ 62.35万 - 项目类别:
Standard Grant
Collaborative Research: Engineering Fracture Response and Transport Behavior in Additively Manufactured, Layered Concrete Materials
合作研究:增材制造的层状混凝土材料的工程断裂响应和传输行为
- 批准号:
2129566 - 财政年份:2021
- 资助金额:
$ 62.35万 - 项目类别:
Standard Grant
相似国自然基金
拟南芥孢子体特异表达的TOUGH基因调控配子体发育的分子机理研究
- 批准号:32170350
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
miRNA生物合成因子TOUGH调控拟南芥核糖体生物合成和rRNA前体转录后加工的机制研究
- 批准号:31900932
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
基于TOUGH2与大气扩散耦合模式的低渗透油田CO2注气区域大气环境影响分析方法研究
- 批准号:41373088
- 批准年份:2013
- 资助金额:95.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Creating Tough, Sustainable Materials Using Fracture Size-Effects and Architecture
职业:利用断裂尺寸效应和架构创造坚韧、可持续的材料
- 批准号:
2339197 - 财政年份:2024
- 资助金额:
$ 62.35万 - 项目类别:
Standard Grant
NSF-SNSF: Crack Path Prediction and Control in Nonlinearly Viscoelastic Materials: in-silico to Experiments with Viscoelastic and Tough Hydrogels
NSF-SNSF:非线性粘弹性材料中的裂纹路径预测和控制:粘弹性和坚韧水凝胶的计算机实验
- 批准号:
2403592 - 财政年份:2024
- 资助金额:
$ 62.35万 - 项目类别:
Standard Grant
Solar2Wave: Design of Floating Solar Farms to Overcome Tough Ocean Waves
Solar2Wave:克服汹涌海浪的浮动太阳能发电场设计
- 批准号:
10048187 - 财政年份:2023
- 资助金额:
$ 62.35万 - 项目类别:
Feasibility Studies
Mechanistic Design and Understanding of Fully Polymeric Antifreezing and Tough Hydrogels
全聚合防冻剂和坚韧水凝胶的机理设计和理解
- 批准号:
2311985 - 财政年份:2023
- 资助金额:
$ 62.35万 - 项目类别:
Standard Grant
Biomineral-inspired mechanically tough perovskite solar cells with enhanced stability
受生物矿物启发,机械坚韧的钙钛矿太阳能电池具有增强的稳定性
- 批准号:
EP/X012263/1 - 财政年份:2023
- 资助金额:
$ 62.35万 - 项目类别:
Research Grant
Biomineral-inspired mechanically tough perovskite solar cells with enhanced stability
受生物矿物启发,机械坚韧的钙钛矿太阳能电池具有增强的稳定性
- 批准号:
EP/X012484/1 - 财政年份:2023
- 资助金额:
$ 62.35万 - 项目类别:
Research Grant
AMCS – Development of a new, lightweight, ultra-tough advanced matrix composite material for EV and LiON battery armour
AMCS — 开发用于电动汽车和锂离子电池装甲的新型、轻质、超坚韧的先进基质复合材料
- 批准号:
10082802 - 财政年份:2023
- 资助金额:
$ 62.35万 - 项目类别:
Collaborative R&D
Drawing on Forced Marriage: Teaching Tough Topics Through Comics
借鉴强迫婚姻:通过漫画教授棘手的话题
- 批准号:
AH/X004325/1 - 财政年份:2023
- 资助金额:
$ 62.35万 - 项目类别:
Research Grant
Theoretical development of super-ductile, super-tough, and super-strong high entropy ceramics
超韧、超韧、超强高熵陶瓷理论发展
- 批准号:
22KF0241 - 财政年份:2023
- 资助金额:
$ 62.35万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Application of mechanically tough composite gels to biomaterials
机械韧性复合凝胶在生物材料中的应用
- 批准号:
23K03337 - 财政年份:2023
- 资助金额:
$ 62.35万 - 项目类别:
Grant-in-Aid for Scientific Research (C)