CAREER: Engineering crop plants to metabolize products of CO2 electrolysis to enable food production with artificial photosynthesis

职业:对农作物进行工程改造,以代谢二氧化碳电解产物,从而通过人工光合作用实现食品生产

基本信息

  • 批准号:
    2239243
  • 负责人:
  • 金额:
    $ 58.25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-01 至 2028-06-30
  • 项目状态:
    未结题

项目摘要

Plants capture sunlight and perform photosynthesis to drive plant growth. Biological photosynthesis is very energy inefficient. Therefore, large areas are required for food cultivation. Artificial photosynthesis is more energy efficient than natural photosynthesis but has never been used for food production. This project seeks to develop an interface between plants and artificial photosynthesis systems (APS). Once the interface has been developed, plants will be engineered to grow more efficiently utilizing APS augmentation. The research will be integrated with educational and outreach activities. These will include engaging undergraduates in labs focused on CO2 electrolysis and creating and running a ‘Startup Design Competition’ to encourage students to translate research results into entrepreneurial pursuits.Artificial photosynthesis has the potential to be much more energy efficient than biological photosynthesis but has not yet been applied to food production. A hybrid inorganic–biological artificial photosynthesis system for energy-efficient food production was recently developed. In a two-step process, CO2 electrolysis converts CO2 into acetate, which serves as a carbon and energy source for food producing organisms (algae, yeast, and mushrooms) grown in the dark. Coupling this system to commercial photovoltaics gives a solar energy-to-biomass energy conversion efficiency of ~4% for the growth of algae. Crop plants cannot currently be cultivated with CO2 electrolysis effluent as their sole carbon and energy source. Many knowledge gaps exist about plant metabolism of short chain carboxylic acids, alcohols, and aldehydes found in CO2 electrolysis effluent. The goals of this project are to discover how plants metabolize products of CO2 electrolysis and to engineer plant metabolism to better use these products as heterotrophic sources of carbon and energy. To achieve these goals the project has two main objectives: (1) engineer plants with improved acetate tolerance and utilization; and (2) discover how plants tolerate and metabolize other products of CO2 electrolysis.This project is being jointly supported by the Cellular and Biochemical Engineering (CBE) Program in ENG/CBET and by the Systems and Synthetic Biology (SSB) Program in BIO/MCB.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
植物捕获阳光并进行光合作用以驱动植物生长。生物光合作用是非常能量效率低的。因此,需要大面积的粮食种植。人工光合作用比自然光合作用更节能,但从未用于食品生产。该项目旨在开发植物和人工光合作用系统(APS)之间的接口。一旦接口已经开发,植物将被设计成更有效地利用APS扩增生长。这项研究将与教育和外联活动结合起来。这些措施包括让本科生参与专注于二氧化碳电解的实验室,并创建和运行一个“创业设计竞赛”,以鼓励学生将研究成果转化为创业追求。人工光合作用有可能比生物光合作用更节能,但尚未应用于食品生产。最近开发了一种用于节能食品生产的无机-生物混合人工光合系统。在两步过程中,CO2电解将CO2转化为乙酸盐,乙酸盐作为在黑暗中生长的食品生产生物(藻类,酵母和蘑菇)的碳和能源。将该系统与商业化的光合作用装置相结合,为藻类的生长提供了约4%的太阳能-生物质能量转换效率。目前,农作物不能用CO2电解废水作为其唯一的碳源和能源来栽培。关于CO2电解废水中短链羧酸、醇和醛的植物代谢存在许多知识空白。该项目的目标是发现植物如何代谢CO2电解产物,并设计植物代谢,以更好地利用这些产物作为碳和能量的异养来源。为了实现这些目标,该项目有两个主要目标:(1)改造植物,提高乙酸盐的耐受性和利用率;以及(2)发现植物如何耐受和代谢CO2电解的其他产物。该项目由ENG/CBET的细胞和生物化学工程(CBE)计划和BIO/的系统和合成生物学(SSB)计划共同支持。该奖项反映了NSF的法定使命,并被认为是值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robert Jinkerson其他文献

Optimized genome-wide CRISPR screening enables rapid engineering of growth-based phenotypes in emYarrowia lipolytica/em
优化的全基因组CRISPR筛选可以快速地在emyarrowia脂溶液/em的基于生长的表型工程上
  • DOI:
    10.1016/j.ymben.2024.09.005
  • 发表时间:
    2024-11-01
  • 期刊:
  • 影响因子:
    6.800
  • 作者:
    Nicholas R. Robertson;Varun Trivedi;Brian Lupish;Adithya Ramesh;Yuna Aguilar;Stephanie Carrera;Sangcheon Lee;Anthony Arteaga;Alexander Nguyen;Chase Lenert-Mondou;Marcus Harland-Dunaway;Robert Jinkerson;Ian Wheeldon
  • 通讯作者:
    Ian Wheeldon

Robert Jinkerson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Robert Jinkerson', 18)}}的其他基金

Collaborative Research: EDGE CMT: Discovery and functional characterization of genes that govern ciliate-algal symbiosis
合作研究:EDGE CMT:控制纤毛虫-藻类共生的基因的发现和功能表征
  • 批准号:
    2220620
  • 财政年份:
    2022
  • 资助金额:
    $ 58.25万
  • 项目类别:
    Standard Grant

相似国自然基金

Frontiers of Environmental Science & Engineering
  • 批准号:
    51224004
  • 批准年份:
    2012
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目
Chinese Journal of Chemical Engineering
  • 批准号:
    21224004
  • 批准年份:
    2012
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目
Chinese Journal of Chemical Engineering
  • 批准号:
    21024805
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

The shape of sustainable crop production - re-engineering plant architecture for sustainable food production
可持续作物生产的形态——为可持续粮食生产重新设计植物结构
  • 批准号:
    2878037
  • 财政年份:
    2023
  • 资助金额:
    $ 58.25万
  • 项目类别:
    Studentship
PlantSynBio: Deciphering the grammar of crop regulatory DNA for precise engineering of gene expression
PlantSynBio:破译作物调控 DNA 的语法以实现基因表达的精确工程
  • 批准号:
    2240888
  • 财政年份:
    2023
  • 资助金额:
    $ 58.25万
  • 项目类别:
    Standard Grant
Engineering myxobacterial super-predators to fight crop disease
工程化粘细菌超级捕食者来对抗作物疾病
  • 批准号:
    2753764
  • 财政年份:
    2022
  • 资助金额:
    $ 58.25万
  • 项目类别:
    Studentship
RII Track-2 FEC: Genome Engineering to Sustain Crop Improvement (GETSCI)
RII Track-2 FEC:维持作物改良的基因组工程 (GETSCI)
  • 批准号:
    2121410
  • 财政年份:
    2021
  • 资助金额:
    $ 58.25万
  • 项目类别:
    Cooperative Agreement
Improving stress tolerance in the bioenergy crop switchgrass (Panicum virgatum) by investigating and engineering terpene metabolic networks
通过研究和改造萜烯代谢网络来提高生物能源作物柳枝稷(Panicum virgatum)的抗逆性
  • 批准号:
    425991814
  • 财政年份:
    2019
  • 资助金额:
    $ 58.25万
  • 项目类别:
    Research Fellowships
NSF Postdoctoral Fellowship in Biology FY 2019: Improving C4 Crop Tolerance for Heat Stress by Engineering Thermostable Rubisco Activase
2019 财年 NSF 生物学博士后奖学金:通过工程耐热 Rubisco 激活酶提高 C4 作物对热应激的耐受性
  • 批准号:
    1907288
  • 财政年份:
    2019
  • 资助金额:
    $ 58.25万
  • 项目类别:
    Fellowship Award
Engineering Metabolic Nanoreactors to Increase Food Crop Yield and Hardiness
工程代谢纳米反应器可提高粮食作物产量和抗寒性
  • 批准号:
    502782-2017
  • 财政年份:
    2018
  • 资助金额:
    $ 58.25万
  • 项目类别:
    Postdoctoral Fellowships
Combatting climate change by engineering crop water loss
通过工程作物失水应对气候变化
  • 批准号:
    2109159
  • 财政年份:
    2018
  • 资助金额:
    $ 58.25万
  • 项目类别:
    Studentship
Engineering the defence-vigour balance for increased crop yield
设计防御活力平衡以提高作物产量
  • 批准号:
    DP170103960
  • 财政年份:
    2017
  • 资助金额:
    $ 58.25万
  • 项目类别:
    Discovery Projects
Engineering Metabolic Nanoreactors to Increase Food Crop Yield and Hardiness
工程代谢纳米反应器可提高粮食作物产量和抗寒性
  • 批准号:
    502782-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 58.25万
  • 项目类别:
    Postdoctoral Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了