CAREER: An Automated End-to-end Machine Learning System
职业:自动化的端到端机器学习系统
基本信息
- 批准号:2239351
- 负责人:
- 金额:$ 63.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-01 至 2028-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Machine learning (ML) has surpassed human performance in some contexts, including image classification, natural language processing, game playing, and content generation. ML’s success is enabled by the recent development of ML systems that offer high-level programming interfaces for people to prototype various ML models on modern hardware platforms. However, deploying these models in diverse, real-world computing environments requires significant engineering effort to design and implement the required performance optimizations. To address this challenge, this project explores an automated, end-to-end approach to building efficient, scalable, and sustainable ML systems for diverse ML applications and hardware platforms. The project takes a bottom-up, three-pronged approach that involves (1) automatically discovering and verifying various systems optimizations for different ML models and hardware backends; (2) new methodologies for applying the discovered systems optimizations in an end-to-end fashion; and (3) combining systems and ML optimizations for fast and accurate ML computations.As ML techniques move closer to end-users and become increasingly integrated into today’s society, the proposed work can effectively reduce the energy consumption and financial cost of modern ML techniques. The key improvements of the proposed research will arise along two axes: (1) replacing manually designed performance optimizations used in today’s ML systems with automated generation, verification, and application of systems optimizations for ML computations on modern hardware platforms; and (2) democratizing ML techniques by lowering the monetary cost of developing and deploying ML applications. The project also includes outreach activities to attract students from populations currently underrepresented in computing. Key to these activities is embracing the interdisciplinary nature of ML systems research, which spans computer systems, compilers, programming languages, and machine learning. The software artifacts of this project will be released and regularly maintained.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
机器学习在某些方面已经超过了人类的表现,包括图像分类、自然语言处理、游戏和内容生成。ML的成功得益于ML系统的最新发展,这些系统为人们提供高级编程接口,以便在现代硬件平台上制作各种ML模型的原型。但是,在不同的真实计算环境中部署这些模型需要大量的工程工作来设计和实施所需的性能优化。为了应对这一挑战,该项目探索了一种自动化的端到端方法,为各种ML应用程序和硬件平台构建高效、可扩展和可持续的ML系统。该项目采用自下而上、三管齐下的方法,包括:(1)自动发现和验证针对不同ML模型和硬件后端的各种系统优化;(2)以端到端的方式应用所发现的系统优化;(3)将系统和ML优化相结合,以快速准确地计算ML。随着ML技术越来越接近最终用户并日益融入当今社会,所提出的工作可以有效地降低现代ML技术的能耗和财务成本。拟议研究的主要改进将沿着两个轴线出现:(1)用在现代硬件平台上自动生成、验证和应用针对ML计算的系统优化来取代当今ML系统中使用的手动设计的性能优化;以及(2)通过降低开发和部署ML应用程序的货币成本来使ML技术大众化。该项目还包括一些外联活动,以吸引目前在计算机领域任职人数不足的学生。这些活动的关键是接受ML系统研究的跨学科性质,它横跨计算机系统、编译器、编程语言和机器学习。该项目的软件产品将被发布并定期维护。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhihao Jia其他文献
GraphPipe: Improving Performance and Scalability of DNN Training with Graph Pipeline Parallelism
GraphPipe:利用图管道并行性提高 DNN 训练的性能和可扩展性
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Byungsoo Jeon;Mengdi Wu;Shiyi Cao;Sunghyun Kim;Sunghyun Park;Neeraj Aggarwal;Colin Unger;Daiyaan Arfeen;Peiyuan Liao;Xupeng Miao;Mohammad Alizadeh;G. R. Ganger;Tianqi Chen;Zhihao Jia - 通讯作者:
Zhihao Jia
Effects of non-equilibrium phase behavior in nanopores on multi-component transport during CO<sub>2</sub> injection into shale oil reservoir
- DOI:
10.1016/j.energy.2024.132614 - 发表时间:
2024-10-30 - 期刊:
- 影响因子:
- 作者:
Zhihao Jia;Renyi Cao;Baobiao Pu;Linsong Cheng;Peiyu Li;Abeeb A. Awotunde;Yanbo Lin;Quanyu Pan;Yuying Sun - 通讯作者:
Yuying Sun
Immune-related genes response to stimulation of miR-155 overexpression in CIK (ctenopharyngodon idella kidney) cells and zebrafish
CIK(草鱼肾)细胞和斑马鱼中免疫相关基因对 miR-155 过表达刺激的反应
- DOI:
10.1016/j.fsi.2019.09.002 - 发表时间:
2019 - 期刊:
- 影响因子:4.7
- 作者:
Yonglin Hua;Jing Zhang;Zhihao Jia;Jian Li;Xianrong Xiong;Yan Xiong - 通讯作者:
Yan Xiong
Extracellular matrix in skeletal muscle injury and atrophy: mechanisms and therapeutic implications
骨骼肌损伤和萎缩中的细胞外基质:机制及治疗意义
- DOI:
10.1016/j.jot.2025.03.004 - 发表时间:
2025-05-01 - 期刊:
- 影响因子:7.800
- 作者:
Xiaoyang Ge;Yesheng Jin;Jingyuan He;Zhihao Jia;Ying Liu;Yong Xu - 通讯作者:
Yong Xu
Accelerating Retrieval-Augmented Language Model Serving with Speculation
加速检索增强语言模型与推测服务
- DOI:
10.48550/arxiv.2401.14021 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Zhihao Zhang;Alan Zhu;Lijie Yang;Yihua Xu;Lanting Li;P. Phothilimthana;Zhihao Jia - 通讯作者:
Zhihao Jia
Zhihao Jia的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Identification and impact of polymers on stem cell products in an automated biomanufacturing platform
自动化生物制造平台中聚合物对干细胞产品的识别和影响
- 批准号:
10089013 - 财政年份:2024
- 资助金额:
$ 63.84万 - 项目类别:
Collaborative R&D
ARC Training Centre for Automated Vehicles in Rural and Remote Regions
ARC农村和偏远地区自动驾驶汽车培训中心
- 批准号:
IC230100001 - 财政年份:2024
- 资助金额:
$ 63.84万 - 项目类别:
Industrial Transformation Training Centres
Scalable and Automated Tuning of Spin-based Quantum Computer Architectures
基于自旋的量子计算机架构的可扩展和自动调整
- 批准号:
2887634 - 财政年份:2024
- 资助金额:
$ 63.84万 - 项目类别:
Studentship
VIPAuto: Robust and Adaptive Visual Perception for Automated Vehicles in Complex Dynamic Scenes
VIPAuto:复杂动态场景中自动驾驶车辆的鲁棒自适应视觉感知
- 批准号:
EP/Y015878/1 - 财政年份:2024
- 资助金额:
$ 63.84万 - 项目类别:
Fellowship
Screen4SpLDs - Development of an Automated Pre-Screening Tool for Specific Learning Disabilities in Children.
Screen4SpLDs - 开发针对儿童特定学习障碍的自动预筛查工具。
- 批准号:
EP/Y002121/1 - 财政年份:2024
- 资助金额:
$ 63.84万 - 项目类别:
Research Grant
CRII: SaTC: Automated Knowledge Representation for IoT Cybersecurity Regulations
CRII:SaTC:物联网网络安全法规的自动化知识表示
- 批准号:
2348147 - 财政年份:2024
- 资助金额:
$ 63.84万 - 项目类别:
Standard Grant
Automated Formal Verification of Quantum Protocols for the Quantum Era
量子时代量子协议的自动形式验证
- 批准号:
24K20757 - 财政年份:2024
- 资助金额:
$ 63.84万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
RII Track-4:NSF: Automated Design and Innovation of Chemical Production Processes with Intelligent Computing
RII Track-4:NSF:利用智能计算进行化学品生产过程的自动化设计和创新
- 批准号:
2327303 - 财政年份:2024
- 资助金额:
$ 63.84万 - 项目类别:
Standard Grant
Automated Software Testing Platform
自动化软件测试平台
- 批准号:
10092457 - 财政年份:2024
- 资助金额:
$ 63.84万 - 项目类别:
Collaborative R&D
Automated Modelling Assistance for the Creation of Complex Planning Models
用于创建复杂规划模型的自动建模协助
- 批准号:
DE240101245 - 财政年份:2024
- 资助金额:
$ 63.84万 - 项目类别:
Discovery Early Career Researcher Award