CAREER: Learning for Generalization in Large-Scale Cyber-Physical Systems
职业:大规模网络物理系统中的泛化学习
基本信息
- 批准号:2239566
- 负责人:
- 金额:$ 55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2028-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The adoption of cyber-physical systems (CPS) is growing at an accelerated rate, giving rise to large-scale CPS––for example, comprised of large numbers of robots in a warehouse, turbines on a wind farm, or vehicles and traffic signals in a city. If intelligently coordinated, these systems will unlock transformative societal benefits across broad economic sectors. They also promise to contribute to the most pressing challenge of the century––climate change––by substantially utilizing resources more effectively, such as from supply chains, energy systems, and urban systems. Unfortunately, effective coordination schemes have been elusive due to the sheer scale and diversity of scenarios that these systems encounter. To advance robust coordination in large-scale CPS, this project investigates the generalization of learning-enabled methods as a key solution concept, in light of their potential to translate coordination schemes across disparate scenarios. The project's impact will be enhanced through the dissemination of open-source research and teaching material, and via experiments derived from large-scale CPS applications in collaboration with public sector, industry, and academic partners. The project also boosts K-12, undergraduate, graduate, and professional education, by supporting and actively engaging students in research activities, promoting the translation of research to practice, and through outreach efforts targeting middle school students from underrepresented and underserved communities.This NSF CAREER project focuses on an enabling methodology for large-scale CPS: understanding generalization of learning-enabled methods, and further applying it to reduce the complexity of system design and analysis. Recent evidence shows that controllers trained using machine learning sometimes have the remarkable ability to generalize to other scenarios, such as to different problem sizes or between simulated and physical robotic systems. However, generalization is currently more of an art than a science; the conditions under which generalization is successful are not well understood. At the same time, large-scale CPS often induce parameterized families of scenarios; for example, traffic control must consider different weather conditions, sensing modalities, and numbers and types of agents. This family of related CPS scenarios thus provides a platform for carefully examining generalization across scenarios. The project will: 1) advance learning algorithms for large-scale CPS by designing coordination-aware model-based reinforcement learning methods for multi-agent systems; 2) leverage the algorithms to understand generalization by formalizing, measuring, and characterizing generalization with respect to deviations in CPS scenarios; and then 3) harness generalization for robust coordination, by efficiently solving large families of scenarios necessary to provide high performance and assurances.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
网络物理系统(CPS)的采用正在加速增长,从而产生了大规模的CPS-例如,由仓库中的大量机器人,风电场的涡轮机或城市中的车辆和交通信号组成。如果能够进行智能协调,这些系统将在广泛的经济部门释放变革性的社会效益。它们还承诺通过更有效地利用供应链、能源系统和城市系统等资源,为应对世纪最紧迫的挑战----气候变化做出贡献。不幸的是,由于这些系统所遇到的情况的规模和多样性,有效的协调计划一直难以实现。为了在大规模CPS中推进鲁棒协调,该项目研究了学习方法的泛化作为一个关键的解决方案概念,考虑到它们在不同场景中转换协调方案的潜力。该项目的影响将通过传播开放源研究和教学材料,并通过与公共部门,工业和学术伙伴合作的大规模CPS应用程序所产生的实验来加强。该项目还通过支持和积极吸引学生参与研究活动,促进研究转化为实践,并通过针对代表性不足和服务不足社区的中学生的外展工作,促进K-12,本科生,研究生和专业教育。NSF CAREER项目专注于大规模CPS的使能方法:理解学习方法的泛化,并进一步应用它来降低系统设计和分析的复杂性。最近的证据表明,使用机器学习训练的控制器有时具有非凡的能力来推广到其他场景,例如不同的问题大小或模拟和物理机器人系统之间。然而,归纳目前更多的是一门艺术,而不是一门科学;归纳成功的条件还没有得到很好的理解。与此同时,大规模的CPS往往会导致参数化的家庭的情况下,例如,交通控制必须考虑不同的天气条件,传感模式,数量和类型的代理。因此,这一系列相关的CPS场景提供了一个平台,用于仔细检查跨场景的泛化。该项目将:1)通过为多智能体系统设计基于协调感知模型的强化学习方法来推进大规模CPS的学习算法; 2)通过形式化、测量和表征CPS场景中偏差的泛化,利用算法来理解泛化;然后3)用于鲁棒协调的线束泛化,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查进行评估,被认为值得支持的搜索.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cathy Wu其他文献
Multi-behavior Learning for Socially Compatible Autonomous Driving
社交兼容自动驾驶的多行为学习
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Sanjula Jayawardana;Vindula Jayawardana;Kaneeka. Vidanage;Cathy Wu - 通讯作者:
Cathy Wu
CEO inside debt holdings and climate risk concerns in corporate acquisition
公司收购中的首席执行官内部债务持有与气候风险担忧
- DOI:
10.1016/j.frl.2024.106473 - 发表时间:
2025-01-01 - 期刊:
- 影响因子:6.900
- 作者:
Yueying Su;Jialong Li;Zhicheng Li;Cathy Wu - 通讯作者:
Cathy Wu
Expert with Clustering: Hierarchical Online Preference Learning Framework
聚类专家:分层在线偏好学习框架
- DOI:
10.48550/arxiv.2401.15062 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Tianyue Zhou;Jung;B. R. Ardabili;Hamed Tabkhi;Cathy Wu - 通讯作者:
Cathy Wu
Sociotechnical Specification for the Broader Impacts of Autonomous Vehicles
自动驾驶汽车更广泛影响的社会技术规范
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
T. Gilbert;Aaron J. Snoswell;Michael Dennis;R. McAllister;Cathy Wu - 通讯作者:
Cathy Wu
Lecture 20: Multi-Agent Deep RL & Emergent Communication
第 20 讲:多智能体深度强化学习
- DOI:
10.1075/lia.8.1.04tho - 发表时间:
2021 - 期刊:
- 影响因子:2.7
- 作者:
Cathy Wu;Athul Paul Jacob - 通讯作者:
Athul Paul Jacob
Cathy Wu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cathy Wu', 18)}}的其他基金
Collaborative Research: CPS: Medium: An Online Learning Framework for Socially Emerging Mixed Mobility
协作研究:CPS:媒介:社会新兴混合出行的在线学习框架
- 批准号:
2149548 - 财政年份:2022
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
BIBM-2012 Travel Awards: Broadening Interdisciplinary Research and Education in Bioinformatics and Biomedicine- to be held in Philadelphia, PA, October 4 - 7, 2012
BIBM-2012 旅行奖:扩大生物信息学和生物医学的跨学科研究和教育 - 将于 2012 年 10 月 4 日至 7 日在宾夕法尼亚州费城举行
- 批准号:
1242809 - 财政年份:2012
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
ABI Development: Integrative Bioinformatics for Knowledge Discovery of PTM Networks
ABI 开发:用于 PTM 网络知识发现的综合生物信息学
- 批准号:
1062520 - 财政年份:2011
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
BIBM Conference: Fostering Interdisciplinary Research and Education in Bioinformatics and Biomedicine
BIBM 会议:促进生物信息学和生物医学的跨学科研究和教育
- 批准号:
0960601 - 财政年份:2009
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
Linking Text Mining with Ontology and Systems Biology
将文本挖掘与本体论和系统生物学联系起来
- 批准号:
0850319 - 财政年份:2009
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
Integrated Protein Classification Database System For Genomic and Proteomic Research
用于基因组和蛋白质组研究的集成蛋白质分类数据库系统
- 批准号:
0138188 - 财政年份:2002
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
PIR Classification Database for Genomic Research
用于基因组研究的 PIR 分类数据库
- 批准号:
9974855 - 财政年份:1999
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
Database of Protein Modifications: Enhancements for Visualization, Modeling and Internet Access
蛋白质修饰数据库:可视化、建模和互联网访问的增强
- 批准号:
9808414 - 财政年份:1998
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
- 批准号:61573081
- 批准年份:2015
- 资助金额:64.0 万元
- 项目类别:面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
- 批准号:61572533
- 批准年份:2015
- 资助金额:66.0 万元
- 项目类别:面上项目
E-Learning中学习者情感补偿方法的研究
- 批准号:61402392
- 批准年份:2014
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Towards Continual Learning on Evolving Graphs: from Memorization to Generalization
职业:走向演化图的持续学习:从记忆到泛化
- 批准号:
2338878 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
Elucidating the Neural Computations Underlying Spatial Learning, Decision-Making and Generalization in Virtually-Navigating Monkeys
阐明虚拟导航猴子空间学习、决策和泛化背后的神经计算
- 批准号:
10723874 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
Generalization in Structured Prediction and Deep Learning
结构化预测和深度学习的泛化
- 批准号:
535206-2019 - 财政年份:2022
- 资助金额:
$ 55万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
CAREER: Statistical Learning from a Modern Perspective: Over-parameterization, Regularization, and Generalization
职业:现代视角下的统计学习:过度参数化、正则化和泛化
- 批准号:
2143215 - 财政年份:2022
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
Novel learning algorithms through off-sample generalization metric design
通过样本外泛化度量设计的新颖学习算法
- 批准号:
22H03646 - 财政年份:2022
- 资助金额:
$ 55万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Mechanisms underlying the control and generalization of sensorimotor learning
感觉运动学习的控制和泛化的潜在机制
- 批准号:
RGPIN-2017-04684 - 财政年份:2022
- 资助金额:
$ 55万 - 项目类别:
Discovery Grants Program - Individual
Principled approaches to deep learning: generalization under distribution shift and predictive uncertainty
深度学习的原则方法:分布变化和预测不确定性下的泛化
- 批准号:
RGPIN-2022-03609 - 财政年份:2022
- 资助金额:
$ 55万 - 项目类别:
Discovery Grants Program - Individual
Causality for Out of Distribution Generalization in Deep Learning
深度学习中分布外泛化的因果关系
- 批准号:
575476-2022 - 财政年份:2022
- 资助金额:
$ 55万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Learning Diverse Options for More Accurate Causal Models and Increased Generalization in a Multi-Task Setting
学习多种选项以获得更准确的因果模型并在多任务设置中增强泛化能力
- 批准号:
546636-2020 - 财政年份:2022
- 资助金额:
$ 55万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
CRII: AF: Optimization and sampling algorithms with provable generalization and runtime guarantees, with applications to deep learning
CRII:AF:具有可证明的泛化性和运行时保证的优化和采样算法,以及深度学习的应用
- 批准号:
2104528 - 财政年份:2021
- 资助金额:
$ 55万 - 项目类别:
Standard Grant