CAREER: Distributed, Wirelessly Powered, Implantable, Opto-Electro Neural Interface
职业:分布式、无线供电、可植入、光电神经接口
基本信息
- 批准号:2239915
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2028-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Recent research has revealed that the complex functionality of the brain arises from the intricate interactions of a vast network of neurons spanning across interconnected regions of the brain. Therefore, future neural recording and modulation techniques require simultaneously interfacing with multiple neural sites that are distributed over a large brain area. However, current neural interface devices typically consist of a single, centralized structure with transcutaneous connections to electrode/LED arrays, leading to scalability issues. A small number of recording/stimulation channels limits spatial coverage, whereas a large number of channels results in bulky device size, concentrated heat generation, and a high risk of wire connection failure. The goal of this CAREER project is to explore a novel scaling solution involving a distributed untethered network of mm-scale, wirelessly powered, free-floating neural interface implants that enable optical stimulation and electrocorticography (ECoG) recording of large-scale neuronal ensembles over a large brain area. The proposed distributed neural interface system in this CAREER project will advance neuroscience studies and enhance the foundational understanding of the brain. Additionally, this project will expand the utility and capabilities of the rapidly growing field of optogenetics, contributing to the development of new neural prostheses and neuromodulation therapies that can supplement current medication-based treatments for neurological disorders. The education plan of this project will make a significant impact on STEM engagement. The plan involves developing multidisciplinary courses that can be cross-listed with related majors such as biomedical engineering, neural engineering, and neural science, providing research opportunities for students from underrepresented minority groups in STEM, and offering mentorship to female students for their career development. Outreach activities will also be organized to facilitate the sharing of resources, tools, and knowledge with teachers and students. The motivation of this CAREER project is to drive progress in the field of neural interfaces by enabling precise neural recording and targeted neuromodulation across a large brain area while minimizing invasiveness. Building upon this motivation, the primary goal is to create an innovative distributed untethered framework that consists of an array of untethered mm-scale wirelessly powered implantable opto-electro stimulation (WIOES) devices. Each WIOES device will incorporate a flexible polyimide board that houses four planar recording electrodes and one LED along with an application-specific integrated circuit (ASIC) via a passive carrier chip, all packed in a compact (smaller than one mm cube) and lightweight package. These WIOES devices placed on the brain surface will record electrocorticography (ECoG) and apply energy-efficient optical stimulation while being wirelessly powered and monitored by an external controller via a dual-band resonance-based inductive wireless link. Three research thrusts (RTs) are proposed to achieve the research goal. RT1 will be dedicated to developing the first compact neural implant smaller than one mm cube that has both optical stimulation and neural recording modalities. RT2 focuses on the development of a wireless and untethered neural interface system that relies on an innovative dual-band resonance-based inductive wireless link and an energy-efficient data communication protocol for wireless power and data transmission with the array of WIOES implants. RT3 aims to assess the functionality and reliability of the proposed distributed WIOES implants through a series of in vitro and in vivo tests. The successful completion of this CAREER project will establish a new paradigm for neural interfaces, offering unique features such as wireless and untethered operation, wide spatial coverage, and minimal invasiveness. This new paradigm will create new opportunities for neuroscience research and enable a deeper understanding of the brain.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
最近的研究表明,大脑的复杂功能源于跨越大脑相互联系的区域的巨大神经元网络的复杂相互作用。因此,未来的神经记录和调制技术需要同时与分布在大片大脑区域的多个神经部位对接。然而,目前的神经接口设备通常由单一的集中式结构组成,通过皮肤连接到电极/LED阵列,这导致了可扩展性问题。少量的记录/刺激通道限制了空间覆盖范围,而大量的通道会导致设备体积庞大、产生集中的热量,并且布线故障的风险很高。这个职业项目的目标是探索一种新型的扩展解决方案,涉及一种由毫米级、无线供电、自由浮动的神经接口植入物组成的分布式自由网络,使光学刺激和皮层脑电(ECoG)记录能够在大片大脑区域内进行大规模神经元集合的记录。在这个职业项目中提出的分布式神经接口系统将促进神经科学研究,并增强对大脑的基础理解。此外,该项目将扩大快速增长的光遗传学领域的实用价值和能力,有助于开发新的神经假体和神经调节疗法,以补充目前以药物为基础的神经疾病治疗。该项目的教育计划将对STEM的参与产生重大影响。该计划包括开发可与生物医学工程、神经工程和神经科学等相关专业交叉列出的多学科课程,为STEM中代表不足的少数群体的学生提供研究机会,并为女学生的职业发展提供指导。还将组织外展活动,以促进与教师和学生分享资源、工具和知识。这个职业项目的动机是通过实现精确的神经记录和大范围大脑区域的有针对性的神经调节,同时将侵入性降至最低,推动神经接口领域的进步。在这一动机的基础上,主要目标是创建一种创新的分布式非束缚框架,由一系列非束缚毫米级无线供电植入式光电刺激(WIOES)设备组成。每个WIOES设备将包含一个柔性聚酰亚胺电路板,其中包含四个平面记录电极和一个LED,以及一个通过无源载体芯片的专用集成电路(ASIC),所有这些都封装在紧凑(小于1 mm立方体)和轻便的封装中。这些放置在大脑表面的WIOES设备将记录皮层脑电(ECoG),并应用节能的光刺激,同时通过基于双频共振的感应无线链路由外部控制器无线供电和监控。为了实现研究目标,提出了三个研究推力(RTS)。RT1将致力于开发第一个小于1毫米立方体的紧凑型神经植入物,具有光学刺激和神经记录形式。RT2专注于开发无线和非栓系神经接口系统,该系统依赖于创新的基于双频段谐振的感应无线链路和节能数据通信协议,用于通过WIOES植入物阵列进行无线功率和数据传输。RT3旨在通过一系列体外和体内测试来评估建议的分布式WIOES植入物的功能和可靠性。这一职业项目的成功完成将为神经接口建立一个新的范例,提供独特的功能,如无线和无束缚操作、广泛的空间覆盖和最小的侵入性。这一新的范式将为神经科学研究创造新的机会,并使人们能够更深入地了解大脑。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yaoyao Jia其他文献
A Low-Ripple Switched-Capacitor-based DC-DC Converter with Optimal Efficiency Tracking for Self-Powered Wearable Devices
一种基于低纹波开关电容器的 DC-DC 转换器,具有适用于自供电可穿戴设备的最佳效率跟踪
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Linran Zhao;Yaoyao Jia - 通讯作者:
Yaoyao Jia
Metabolic profiling and biological mechanisms of body fat reduction in mice fed the ethanolic extract of black-colored rice
喂食黑米乙醇提取物的小鼠的代谢谱和体脂减少的生物学机制
- DOI:
10.1016/j.foodres.2013.05.001 - 发表时间:
2013 - 期刊:
- 影响因子:8.1
- 作者:
Hea‐won Kim;A;S. Yeo;Hyun Chung;Ji Hae Lee;M. Hoang;Yaoyao Jia;Sang‐Ik Han;Sea;Sung;Young - 通讯作者:
Young
A Data-Driven Analog Circuit Synthesizer with Automatic Topology Selection and Sizing
具有自动拓扑选择和尺寸调整功能的数据驱动模拟电路合成器
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Souradip Poddar;A. Budak;Linran Zhao;Chen;Supriyo Maji;Keren Zhu;Yaoyao Jia;David Z. Pan - 通讯作者:
David Z. Pan
An Efficient Switched Capacitor DC-DC Converter for Body Heat Energy Harvesting
用于体热能量收集的高效开关电容 DC-DC 转换器
- DOI:
10.1109/mwscas57524.2023.10406050 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Linran Zhao;Yaoyao Jia - 通讯作者:
Yaoyao Jia
Hypolipidemic effect of Goami-3 rice (Oryza sativa L. cv. Goami-3) on C57BL/6J mice is mediated by the regulation of peroxisome proliferator-activated receptor-α and -γ.
Goami-3 水稻 (Oryza sativa L. cv. Goami-3) 对 C57BL/6J 小鼠的降血脂作用是通过过氧化物酶体增殖物激活受体-α 和 -γ 的调节介导的。
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:5.6
- 作者:
A;S. Yeo;Ji Hae Lee;Hea‐won Kim;Yaoyao Jia;M. Hoang;Hyun Chung;Young;Sung - 通讯作者:
Sung
Yaoyao Jia的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yaoyao Jia', 18)}}的其他基金
Collaborative Research: SCH: A wireless optoelectronic implant for closed-loop control of bi-hormone secretion from genetically modified islet organoid grafts
合作研究:SCH:一种无线光电植入物,用于闭环控制转基因胰岛类器官移植物的双激素分泌
- 批准号:
2306709 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: NCS-FO: Intelligent Closed-Loop Neural Interface System for Studying Mechanisms of Somatosensory Feedback in Control of Functional and Stable Locomotion
合作研究:NCS-FO:智能闭环神经接口系统,用于研究体感反馈控制功能性和稳定运动的机制
- 批准号:
2151788 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: NCS-FO: Intelligent Closed-Loop Neural Interface System for Studying Mechanisms of Somatosensory Feedback in Control of Functional and Stable Locomotion
合作研究:NCS-FO:智能闭环神经接口系统,用于研究体感反馈控制功能性和稳定运动的机制
- 批准号:
2024486 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
Graphon mean field games with partial observation and application to failure detection in distributed systems
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Next-Generation Distributed Graph Engine for Big Graphs
适用于大图的下一代分布式图引擎
- 批准号:
DP240101322 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Discovery Projects
CAREER: Verifying Security and Privacy of Distributed Applications
职业:验证分布式应用程序的安全性和隐私
- 批准号:
2338317 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
- 批准号:
2331710 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
- 批准号:
2331711 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: AF: Medium: The Communication Cost of Distributed Computation
合作研究:AF:媒介:分布式计算的通信成本
- 批准号:
2402836 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
- 批准号:
2403312 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: Green Functions as a Service: Towards Sustainable and Efficient Distributed Computing Infrastructure
职业:绿色功能即服务:迈向可持续、高效的分布式计算基础设施
- 批准号:
2340722 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Coordination of Action in Distributed, but Unequal, Bimanual Tasks
协调分布式但不平等的双手任务中的行动
- 批准号:
2341539 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant