Data Driven Predictive Auditory Cues for Safety and Fluency in Human-Robot Interaction
数据驱动的预测听觉线索可确保人机交互的安全性和流畅性
基本信息
- 批准号:2240525
- 负责人:
- 金额:$ 42.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-15 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Most industrial and social robots are not sufficiently aware of their surroundings, which leads to a wide range of injuries. This can hamper fluent and efficient human-robot work. This project focuses on developing, integrating, and testing a set of sound cues for robotic movements, with the goals of enhancing human safety and allowing fluent interaction. The sound cues are created using algorithms which provide rich information about the robots’ current and future actions, alerting humans to potential hazards, and allowing them to prepare and adjust their work space. Such sound cues bear the promise of using aa non-distracting auditory channel to help humans plan their actions and responses to robotic actions. The system is based on music-driven robotic maneuvers using a novel audio generation method that will provide information about the robotic movements. The algorithm used is trained on a newly created dataset of audio clips with risk information. The system can increase safety, fluency and trust building in human-robot interaction in industrial and personal robots, private and public spaces, addressing tasks in manufacturing, training, education, and others.To address this goal the project is divided into four phases: Phase 1 - collection, analysis, labeling and feature extraction of a newly created dataset of audio clips. Phase 2 - development of a novel neural network model that will be trained on the collected dataset in correlation to labeled set of robotic movements. The output of the model will then be fed to a neural network that will generate long-context raw audio conditioned by musical and gestural features. Phase 3 - integration of the generated audio cues into a large set of robotic gestures with the goal of representing robotic motion and future actions. Phase 4 - a comprehensive evaluation study of the sonified robotic gestures for safety and fluency in a variety of human-robot interaction scenarios.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
大多数工业和社交机器人对周围环境没有足够的意识,这导致了大范围的伤害。这可能会妨碍流畅和高效的人机工作。这个项目的重点是开发、集成和测试一套机器人运动的声音提示,目的是提高人类的安全,并允许流畅的互动。声音线索是通过算法创建的,该算法提供了关于机器人当前和未来行动的丰富信息,提醒人类注意潜在的危险,并允许他们准备和调整他们的工作空间。这种声音线索有望利用一种不分散注意力的听觉渠道,帮助人类计划自己的行动,并对机器人的行动做出反应。该系统基于音乐驱动的机器人动作,使用一种新颖的音频生成方法,该方法将提供有关机器人运动的信息。使用的算法是在一个新创建的带有风险信息的音频片段数据集上进行训练的。该系统可以提高工业和个人机器人、私人和公共空间人机交互的安全性、流畅性和信任度,解决制造、培训、教育等领域的任务。为了实现这一目标,该项目分为四个阶段:第一阶段——收集、分析、标记和特征提取新创建的音频片段数据集。第二阶段-开发一种新的神经网络模型,该模型将在收集的数据集上进行训练,并与标记的机器人运动集相关。然后,模型的输出将被馈送到一个神经网络,该网络将生成由音乐和手势特征调节的长上下文原始音频。阶段3 -将生成的音频线索集成到大量机器人手势中,目标是表示机器人的运动和未来的动作。阶段4 -在各种人机交互场景中,对机器人手势的安全性和流畅性进行综合评估研究。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gil Weinberg其他文献
Synchronization in human-robot Musicianship
人机音乐同步
- DOI:
10.1109/roman.2010.5598690 - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Guy Hoffman;Gil Weinberg - 通讯作者:
Gil Weinberg
Robotic Musicianship - Musical Interactions Between Humans and Machines
机器人音乐——人与机器之间的音乐互动
- DOI:
10.5772/5206 - 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Gil Weinberg - 通讯作者:
Gil Weinberg
Emotional musical prosody for the enhancement of trust: Audio design for robotic arm communication
增强信任的情感音乐韵律:机械臂通信的音频设计
- DOI:
10.1515/pjbr-2021-0033 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Richard J. Savery;Lisa Zahray;Gil Weinberg - 通讯作者:
Gil Weinberg
The embroidered musical ball: a squeezable instrument for expressive performance
刺绣音乐球:一种可挤压的表现力乐器
- DOI:
- 发表时间:
2000 - 期刊:
- 影响因子:0
- 作者:
Gil Weinberg;Maggie Orth;Peter Russo - 通讯作者:
Peter Russo
Visual cues-based anticipation for percussionist-robot interaction
基于视觉线索的打击乐手与机器人交互的预期
- DOI:
10.1145/2157689.2157713 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Marcelo Cicconet;Mason Bretan;Gil Weinberg - 通讯作者:
Gil Weinberg
Gil Weinberg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gil Weinberg', 18)}}的其他基金
NRI: FND: Creating Trust Between Groups of Humans and Robots Using a Novel Music Driven Robotic Emotion Generator
NRI:FND:使用新颖的音乐驱动机器人情感发生器在人类和机器人群体之间建立信任
- 批准号:
1925178 - 财政年份:2019
- 资助金额:
$ 42.23万 - 项目类别:
Standard Grant
I-Corps: Dexterous Robotic Prosthetic Control Using Deep Learning Pattern Prediction from Ultrasound Signal
I-Corps:利用超声波信号的深度学习模式预测灵巧的机器人假肢控制
- 批准号:
1744192 - 财政年份:2017
- 资助金额:
$ 42.23万 - 项目类别:
Standard Grant
EAGER: Volition Based Anticipatory Control for Time-Critical Brain-Prosthetic Interaction
EAGER:基于意志的预期控制,用于时间关键的大脑-假体交互
- 批准号:
1550397 - 财政年份:2015
- 资助金额:
$ 42.23万 - 项目类别:
Standard Grant
EAGER: Sub-second human-robot synchronization
EAGER:亚秒级人机同步
- 批准号:
1345006 - 财政年份:2013
- 资助金额:
$ 42.23万 - 项目类别:
Standard Grant
HCC: Small: Multi Modal Music Intelligence for Robotic Musicianship
HCC:小型:机器人音乐的多模式音乐智能
- 批准号:
1017169 - 财政年份:2010
- 资助金额:
$ 42.23万 - 项目类别:
Standard Grant
HRI: The Robotic Musician - Facilitating Novel Musical Experiences and Outcomes through Human Robot Interaction
HRI:机器人音乐家 - 通过人机交互促进新颖的音乐体验和成果
- 批准号:
0713269 - 财政年份:2007
- 资助金额:
$ 42.23万 - 项目类别:
Standard Grant
相似国自然基金
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
相似海外基金
Collaborative Research: EAGER: SSMCDAT2023: Data-driven Predictive Understanding of Oxidation Resistance in High-Entropy Alloy Nanoparticles
合作研究:EAGER:SSMCDAT2023:数据驱动的高熵合金纳米颗粒抗氧化性预测理解
- 批准号:
2334386 - 财政年份:2023
- 资助金额:
$ 42.23万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: SSMCDAT2023: Data-driven Predictive Understanding of Oxidation Resistance in High-Entropy Alloy Nanoparticles
合作研究:EAGER:SSMCDAT2023:数据驱动的高熵合金纳米颗粒抗氧化性预测理解
- 批准号:
2334385 - 财政年份:2023
- 资助金额:
$ 42.23万 - 项目类别:
Standard Grant
SBIR Phase II: Forecasting Battery Health and Maintenance using Data-Driven Predictive Analytics
SBIR 第二阶段:使用数据驱动的预测分析来预测电池健康状况和维护
- 批准号:
2243671 - 财政年份:2023
- 资助金额:
$ 42.23万 - 项目类别:
Cooperative Agreement
NEW AND SCALABLE PARADIGMS FOR DATA-DRIVEN MODEL PREDICTIVE CONTROL
数据驱动模型预测控制的新的、可扩展的范式
- 批准号:
2315963 - 财政年份:2023
- 资助金额:
$ 42.23万 - 项目类别:
Standard Grant
Data-Driven Predictive Control for Ensuring Grid Security with High Penetration of Wind Energy
数据驱动的预测控制确保风能高渗透电网安全
- 批准号:
2767369 - 财政年份:2022
- 资助金额:
$ 42.23万 - 项目类别:
Studentship
SiemensEPSRC Digital Twin with Data-Driven Predictive Control: Unlocking Flexibility of Industrial Plants for Supporting a Net Zero Electricity System
具有数据驱动预测控制功能的西门子 EPSRC 数字孪生:释放工业工厂的灵活性,支持净零电力系统
- 批准号:
EP/W028573/1 - 财政年份:2022
- 资助金额:
$ 42.23万 - 项目类别:
Research Grant
CAREER: Integrating Information Theory with Data-Driven Mechanics: Toward Predictive Modeling of Material Behavior far from Equilibrium
职业:将信息理论与数据驱动力学相结合:对远离平衡的材料行为进行预测建模
- 批准号:
2047506 - 财政年份:2021
- 资助金额:
$ 42.23万 - 项目类别:
Standard Grant
A Data-Driven Approach for Traumatic Brain Injury Phenotyping: Defining Clinical, Laboratory, and Radiological Features Predictive of Injury-Associated Mental Health Disorders
创伤性脑损伤表型的数据驱动方法:定义预测损伤相关心理健康障碍的临床、实验室和放射学特征
- 批准号:
458638 - 财政年份:2021
- 资助金额:
$ 42.23万 - 项目类别:
Studentship Programs
Invisible Customisation - A Data Driven Approach to Predictive Additive Manufacture Enabling Functional Implant Personalisation
隐形定制——一种数据驱动的预测增材制造方法,实现功能性植入物个性化
- 批准号:
EP/V003356/1 - 财政年份:2020
- 资助金额:
$ 42.23万 - 项目类别:
Research Grant
Open Data-driven Infrastructure for Building Biomolecular Force Field for Predictive Biophysics and Drug Design
开放数据驱动的基础设施,用于构建用于预测生物物理学和药物设计的生物分子力场
- 批准号:
10166314 - 财政年份:2020
- 资助金额:
$ 42.23万 - 项目类别: