SiemensEPSRC Digital Twin with Data-Driven Predictive Control: Unlocking Flexibility of Industrial Plants for Supporting a Net Zero Electricity System

具有数据驱动预测控制功能的西门子 EPSRC 数字孪生:释放工业工厂的灵活性,支持净零电力系统

基本信息

  • 批准号:
    EP/W028573/1
  • 负责人:
  • 金额:
    $ 6.42万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    已结题

项目摘要

In the net-zero transition of the UK by 2050, electricity demand will increase and more renewable power generation will be installed in industrial plants. The bulk electricity system also faces the challenges of increased total and peak demand, increased difficulty in balancing supply and demand, and increased network issues. The flexibility of industrial plants, i.e., the ability to change the normal electricity generation/consumption patterns, can be utilised to address these challenges, through improving the utilisation of renewable power generation onsite and providing balancing and network services to the bulk electricity system. However, the scheduling and control for tapping this flexibility are subject to great difficulty due to significant uncertainties and computational complexity.Digital twins are systems of advanced sensing, communication, simulation, optimisation and control technologies, and can provide updating system states and prediction, based on which data-driven approaches can be developed to tackling the uncertainties and computational complexity in scheduling and control. Specifically, a kernel-learning based method is proposed to characterise the uncertainty sets, and an artificial neutral network based method is proposed for predictive control of industrial plants in real-time operation.A test digital twin platform is established in the lab to demonstrate and assess the proposed data-driven solutions. The platform adopts a two-level structure, with the upper-level global digital twin for whole-plant level predictive control and lower-level local digital twins representing industrial processes, renewable power generation and energy storage systems. The measurements are taken from sensors or a data generator which produces mimic data flow. Two industrial case studies with real data are tested on the platform. One case is an industrial site with a number of bitumen tanks and PV panels, and the other is a paper mill with onsite wind turbines and battery storage.
到2050年英国的零净过渡中,电力需求将增加,并且将在工厂中安装更多可再生发电。批量电力系统还面临着总需求增加和高峰需求,平衡供应和需求的难度增加以及网络问题增加的挑战。工厂的灵活性,即改变正常的发电/消耗模式的能力,可以通过改善可再生能源发电现场的利用,并为散装电力系统提供平衡和网络服务,以应对这些挑战。但是,由于严重的不确定性和计算复杂性,攻击这种灵活性的调度和控制遇到了很大的困难。数字双胞胎是高级感应,沟通,模拟,仿真,优化和控制技术的系统,并且可以基于哪些数据驱动的方法来确定对不确定和计算和计算和计算和计算和控制和控制的更新系统状态和预测。具体而言,提出了一种基于内核学习的方法来表征不确定性集,并提出了一种基于人造的中性网络的方法来实时操作中的工业工厂的预测控制。该平台采用了两级结构,具有全工厂级别预测控制的高层全球数字双胞胎和代表工业流程,可再生发电和能源存储系统的下层本地数字双胞胎。测量取自传感器或产生模拟数据流的数据生成器。在平台上测试了两个具有实际数据的工业案例研究。一个案例是一个具有许多沥青罐和PV面板的工业场所,另一种是带有现场风力涡轮机和电池存储的造纸厂。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Multi-Objective Production Scheduling of a Steel Plant With Electric Arc Furnaces
电弧炉钢厂多目标生产调度
  • DOI:
    10.46855/energy-proceedings-10185
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Pengfei P
  • 通讯作者:
    Pengfei P
Multi-objective scheduling of a steelmaking plant integrated with renewable energy sources and energy storage systems: Balancing costs, emissions and make-span
  • DOI:
    10.1016/j.jclepro.2023.139350
  • 发表时间:
    2023-10
  • 期刊:
  • 影响因子:
    11.1
  • 作者:
    Pengfei Su;Yue Zhou;Jianzhong Wu
  • 通讯作者:
    Pengfei Su;Yue Zhou;Jianzhong Wu
Demand Response from Steelmaking Process Coordinated with Energy Storage Systems
与储能系统协调的炼钢过程的需求响应
  • DOI:
    10.1109/isgteurope56780.2023.10407210
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Su P
  • 通讯作者:
    Su P
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yue Zhou其他文献

Object Tracking within the Framework of Concept Drift
概念漂移框架内的对象跟踪
Development and Validation of a Finger Tremor Simulator
手指震颤模拟器的开发和验证
Enhance the luminescence properties of Ca14Al10Zn6O35:Ti4+ phosphor via cation vacancies engineering of Ca2+ and Zn2+
通过Ca2和Zn2的阳离子空位工程增强Ca14Al10Zn6O35:Ti4荧光粉的发光性能
  • DOI:
    10.1016/j.ceramint.2019.02.041
  • 发表时间:
    2019-06
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Xianbo Wu;Longhai Liu;Mao Xia;Shengxiong Huang;Yue Zhou;Wang Hu;Zhi Zhou;Nan Zhou
  • 通讯作者:
    Nan Zhou
CAV-Enabled Active Resolving of Temporary Mainline Congestion Caused by Gap Creation for On-Ramp Merging Vehicles
支持 CAV 的主动解决因匝道合道车辆间隙造成的临时干线拥堵
Development of a tooth movement model of root resorption during intrusive orthodontic treatment.
侵入性正畸治疗期间牙根吸收的牙齿移动模型的开发。
  • DOI:
    10.4012/dmj.2022-247
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Yue Zhou;Aki Nishiura;Hidetoshi Morikuni;T. Tsujibayashi;Y. Honda;N. Matsumoto
  • 通讯作者:
    N. Matsumoto

Yue Zhou的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yue Zhou', 18)}}的其他基金

Collaborative Research: Understanding and Tailoring the Anode-Electrolyte Interfacial Layers on the Stabilization of Lithium Metal Electrode
合作研究:理解和定制阳极-电解质界面层对锂金属电极稳定性的影响
  • 批准号:
    2312247
  • 财政年份:
    2023
  • 资助金额:
    $ 6.42万
  • 项目类别:
    Standard Grant
CAREER: Fast-Charging Energy Storage Devices Enabled by Modulating Internal Electric Field of Heterostructure
职业:通过调制异质结构内部电场实现快速充电储能装置
  • 批准号:
    2144708
  • 财政年份:
    2022
  • 资助金额:
    $ 6.42万
  • 项目类别:
    Continuing Grant
RII Track-4 NSF: Novel Structure and Properties of Hybrid Electrolytes for Lithium Metal Batteries
RII Track-4 NSF:锂金属电池混合电解质的新颖结构和性能
  • 批准号:
    2132021
  • 财政年份:
    2022
  • 资助金额:
    $ 6.42万
  • 项目类别:
    Standard Grant
CAREER: Fast-Charging Energy Storage Devices Enabled by Modulating Internal Electric Field of Heterostructure
职业:通过调制异质结构内部电场实现快速充电储能装置
  • 批准号:
    2240507
  • 财政年份:
    2022
  • 资助金额:
    $ 6.42万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding and Tailoring the Anode-Electrolyte Interfacial Layers on the Stabilization of Lithium Metal Electrode
合作研究:理解和定制阳极-电解质界面层对锂金属电极稳定性的影响
  • 批准号:
    2038082
  • 财政年份:
    2021
  • 资助金额:
    $ 6.42万
  • 项目类别:
    Standard Grant

相似国自然基金

基于双阀式动力耦合作动阀的数字排量泵能效机理与控制研究
  • 批准号:
    52375070
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
单角度照明模式下无需介质灌注的双波长数字全息相位解耦方法研究
  • 批准号:
    12304329
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
基于数字化双核孔器件的肿瘤细胞蛋白-核酸融合检测方法研究
  • 批准号:
    82372142
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
“双碳”战略下数字经济发展对碳减排的影响:理论机制与实证研究
  • 批准号:
    72203197
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
数字辅助多模重构的宽带双输出功率放大器研究
  • 批准号:
    62201100
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Planning: FIRE-PLAN:High-Spatiotemporal-Resolution Sensing and Digital Twin to Advance Wildland Fire Science
合作研究:规划:FIRE-PLAN:高时空分辨率传感和数字孪生,以推进荒地火灾科学
  • 批准号:
    2335568
  • 财政年份:
    2024
  • 资助金额:
    $ 6.42万
  • 项目类别:
    Standard Grant
Collaborative Research: Planning: FIRE-PLAN:High-Spatiotemporal-Resolution Sensing and Digital Twin to Advance Wildland Fire Science
合作研究:规划:FIRE-PLAN:高时空分辨率传感和数字孪生,以推进荒地火灾科学
  • 批准号:
    2335569
  • 财政年份:
    2024
  • 资助金额:
    $ 6.42万
  • 项目类别:
    Standard Grant
IoDT2 - Internet of Digital Twin Things
IoDT2 - 数字孪生物联网
  • 批准号:
    10098627
  • 财政年份:
    2024
  • 资助金额:
    $ 6.42万
  • 项目类别:
    Collaborative R&D
The First Environmental Digital Twin Dedicated to Understanding Tropical Wetland Methane Emissions for Improved Predictions of Climate Change
第一个致力于了解热带湿地甲烷排放以改进气候变化预测的环境数字孪生
  • 批准号:
    MR/X033139/1
  • 财政年份:
    2024
  • 资助金额:
    $ 6.42万
  • 项目类别:
    Fellowship
A C. elegans whole-brain digital twin
线虫全脑数字双胞胎
  • 批准号:
    BB/Z514317/1
  • 财政年份:
    2024
  • 资助金额:
    $ 6.42万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了