OPUS: A Computational Theory of Biodiversity
OPUS:生物多样性的计算理论
基本信息
- 批准号:2241353
- 负责人:
- 金额:$ 13.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-15 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Biodiversity can be defined as the patterns of distribution of species, genes, and ecosystems on the planet. It is amply documented that the activities of human societies are substantially increasing the extinction rate of species, the loss of genetic variation, and the degradation of ecosystems. This loss imperils many of the services that biodiversity offers such as pollination, pest control, cleansing of water, promoting soil health, and providing resources for innovation in industry and health. Thus, forecasting how the distribution of species change through time is of urgent and critical importance to conserve the remaining biodiversity on this planet. This project will make important contributions to this goal by synthesizing publicly-available data and decades of previous research to develop novel computational models that will realistically predict changes in the distributions of species, communities, and ecosystems. Applications of these models will provide insight into the expansion of invasive species, emergence of human and agricultural diseases, and the impacts of climate change on threatened and endangered species. Results of this project include visual and dynamic maps that will form interactive displays at the University of Kansas Natural History Museum. An important training component is the involvement of a graduate student in the development of the dynamic mathematical models of species distributions as well as the writing of the book and software. The synthesis of decades of research and data will culminate in a book and software that will be accessible to the evolution and ecology research community so that the new models developed in this project can be used broadly and extensively across many species and ecological communities around the world. Currently, most models of species distributions are static and based on presence-absence data; this project will incorporate additional data sources such physiology and species interactions to generate dynamic distribution models for those species. Furthermore, this project will use these models from multiple species to represent ecological changes of whole communities and environments through time and to predict biodiversity patterns over entire landscapes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
生物多样性可以被定义为物种、基因和生态系统在地球上的分布模式。有充分的证据表明,人类社会的活动大大增加了物种的灭绝率、遗传变异的丧失和生态系统的退化。这种损失危及生物多样性提供的许多服务,如授粉、病虫害防治、水净化、促进土壤健康,以及为工业和卫生创新提供资源。因此,预测物种的分布如何随着时间的推移发生变化,对于保护地球上剩余的生物多样性具有迫切而至关重要的意义。该项目将通过综合公开获得的数据和数十年的先前研究来开发新的计算模型,从而现实地预测物种、群落和生态系统的分布变化,从而为这一目标做出重要贡献。这些模型的应用将深入了解入侵物种的扩张、人类和农业疾病的出现,以及气候变化对受威胁和濒危物种的影响。该项目的成果包括视觉和动态地图,这些地图将在堪萨斯大学自然历史博物馆形成互动展示。一个重要的培训部分是研究生参与制定物种分布的动态数学模型以及编写这本书和软件。几十年的研究和数据的综合将最终形成一本书和一本软件,进化和生态学研究社区将可以访问,这样在这个项目中开发的新模型可以在世界各地的许多物种和生态社区中广泛和广泛地应用。目前,大多数物种分布的模型都是静态的,并且基于在场-缺席数据;该项目将纳入其他数据源,如生理学和物种相互作用,以生成这些物种的动态分布模型。此外,该项目将使用来自多个物种的这些模型来表示整个社区和环境随时间的生态变化,并预测整个景观的生物多样性模式。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jorge Soberon其他文献
Jorge Soberon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jorge Soberon', 18)}}的其他基金
Collaborative Research: Arbor: Comparative Analysis Workflows for the Tree of Life
合作研究:Arbor:生命之树的比较分析工作流程
- 批准号:
1208472 - 财政年份:2012
- 资助金额:
$ 13.91万 - 项目类别:
Standard Grant
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
REU Site: Computational Number Theory
REU 网站:计算数论
- 批准号:
2349174 - 财政年份:2024
- 资助金额:
$ 13.91万 - 项目类别:
Continuing Grant
Dynamic treatment regimes via smooth surrogate loss: theory, methods, and computational aspects
通过平滑替代损失的动态治疗方案:理论、方法和计算方面
- 批准号:
2311098 - 财政年份:2023
- 资助金额:
$ 13.91万 - 项目类别:
Continuing Grant
Extension and demonstration of two-particle-level computational theory based on dimensionality reduction to nonlocal electron correlation effects
基于降维非局域电子相关效应的双粒子级计算理论的推广与论证
- 批准号:
22KK0226 - 财政年份:2023
- 资助金额:
$ 13.91万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
Using Computational Time-Dependent Ginzburg-Landau Theory to calculate & visualise the current density of high-field superconductors in fusion tokamak
使用计算瞬态Ginzburg-Landau理论进行计算
- 批准号:
2910484 - 财政年份:2023
- 资助金额:
$ 13.91万 - 项目类别:
Studentship
New proximal algorithms for computational imaging: From optimisation theory to enhanced deep learning
计算成像的新近端算法:从优化理论到增强型深度学习
- 批准号:
EP/X028860/1 - 财政年份:2023
- 资助金额:
$ 13.91万 - 项目类别:
Research Grant
Representation Theory Meets Computational Algebra and Complexity Theory
表示论遇见计算代数和复杂性理论
- 批准号:
2302375 - 财政年份:2023
- 资助金额:
$ 13.91万 - 项目类别:
Standard Grant
New theory for security analysis: from information inequality to computational inequality
安全分析新理论:从信息不平等到计算不平等
- 批准号:
23K17455 - 财政年份:2023
- 资助金额:
$ 13.91万 - 项目类别:
Grant-in-Aid for Challenging Research (Pioneering)
Computational Techniques for Bioinformatics and Information Theory Applications
生物信息学和信息论应用的计算技术
- 批准号:
DDG-2020-00036 - 财政年份:2022
- 资助金额:
$ 13.91万 - 项目类别:
Discovery Development Grant
Mathematical theory and computational methods for seismic full waveform inversion problems
地震全波形反演问题的数学理论与计算方法
- 批准号:
RGPIN-2019-04830 - 财政年份:2022
- 资助金额:
$ 13.91万 - 项目类别:
Discovery Grants Program - Individual
PIPP Phase I: Computational Theory of the Co-evolution of Pandemics, (Mis)information, and Human Mindsets and Behavior
PIPP 第一阶段:流行病、(错误)信息以及人类心态和行为共同进化的计算理论
- 批准号:
2200112 - 财政年份:2022
- 资助金额:
$ 13.91万 - 项目类别:
Standard Grant














{{item.name}}会员




