Collaborative Research: MRA: Constraining the continental-scale terrestrial carbon cycle using NEON data

合作研究:MRA:使用 NEON 数据约束大陆尺度的陆地碳循环

基本信息

  • 批准号:
    2242034
  • 负责人:
  • 金额:
    $ 44.87万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Plant life in U.S. forests consume large volumes of carbon dioxide, playing an important role in regulating the concentrations of this important gas in the atmosphere. There is an urgent need for scientists to reduce uncertainties in future projections of atmospheric carbon dioxide concentrations and to more confidently assess whether plants in forests will continue to offset carbon dioxide emissions to the atmosphere from the burning of fossil fuels. The NSF-funded National Ecological Observatory Network (NEON) is a continental-scale ecological observation facility that collects and provides quality-controlled data from 81 field sites across the United States that characterize and quantify how our nation's ecosystems are changing. NEON's measurements of plant photosynthesis and respiration are providing the data needed for computer projections of continental scale patterns, year-to-year variations, and trends in the global carbon cycle. This project will develop more refined continental-scale carbon profiles by using a novel approach to improve complex computer models and delivering a widely-sought application of NEON data. The investigators will broaden impacts of this project by providing training to early-career scientists, broadening diversity, sharing products with the research community, and enhancing research and education infrastructure. The results are anticipated to be of high value for integrated assessments of global change and will be useful for federal, state and local agencies, and land managers who are making decisions on managing U.S. natural resources.The investigators will constrain the continental-scale terrestrial carbon cycle by integrating observations from NEON, satellite data, data-driven methods, and data-model integration techniques. The objectives are to: (1) use NEON data to develop continental-scale flux products that are need to help realize NSF's goals for NEON; (2) evaluate information content of NEON data sets for reducing model uncertainty; (3) assimilate multiple NEON data sets into complex land models to quantify the U.S. land carbon sink and its uncertainty; (4) understand the continental-scale carbon dynamics and underlying regulatory mechanisms. First, the investigators will utilize NEON data to develop an hourly, gridded Gross Primary Production(GPP) product with uncertainty estimates based on satellite observations and meteorological data. Second, they will use NEON data along with solar-induced chlorophyll fluorescence (SIF) data from satellites to develop gridded complimentary GPP products with uncertainty estimates. Third, they will utilize multiple heterogeneous datasets from NEON and the gridded GPP products for quantifying the US land carbon sink potential and assess the effectiveness of NEON data to constrain parameter estimation and model prediction. Fourth, they will develop a multiple model ensemble to understand constraints of flux- vs. pool-based data on structure uncertainty in model prediction. Fifth, they will apply data assimilation techniques to quantify parameter uncertainty and assess constraints of multiple vs. single NEON data sets on parameter estimation with three different models. Finally, they will assess the US land carbon sink, its uncertainty, and regulatory mechanisms with NEON data-based gridded flux products, NEON data-trained models, and the traceability framework. This project will ultimately provide feedback towards improvement of models and NEON observations via uncertainty analysis.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
美国森林中的植物消耗大量的二氧化碳,在调节这种重要气体在大气中的浓度方面发挥着重要作用。科学家们迫切需要减少今后对大气层二氧化碳浓度预测的不确定性,并更有信心地评估森林中的植物是否将继续抵消燃烧化石燃料向大气层排放的二氧化碳。NSF资助的国家生态观测网络(氖)是一个大陆规模的生态观测设施,收集和提供来自美国81个实地站点的质量控制数据,这些数据描述和量化了我们国家的生态系统正在发生的变化。氖对植物光合作用和呼吸作用的测量提供了计算机预测大陆尺度模式、年度变化和全球碳循环趋势所需的数据。该项目将通过使用一种新的方法来改进复杂的计算机模型,并提供广泛寻求的氖数据应用,从而制定更精确的大陆尺度碳分布图。研究人员将通过为早期职业科学家提供培训,扩大多样性,与研究界分享产品以及加强研究和教育基础设施来扩大该项目的影响。研究结果对全球变化的综合评估具有重要价值,并将对美国自然资源管理决策的联邦、州和地方机构以及土地管理者有用。研究人员将通过整合氖观测数据、卫星数据、数据驱动方法和数据模型集成技术来限制大陆尺度的陆地碳循环。其目标是:(1)使用氖数据开发大陆尺度通量产品,以帮助实现NSF的氖目标;(2)评估氖数据集的信息内容,以减少模型的不确定性;(3)将多个氖数据集同化到复杂的陆地模型中,以量化美国陆地碳汇及其不确定性;(4)了解大陆尺度碳动力学和潜在的监管机制。首先,研究人员将利用氖数据开发每小时网格化的初级生产总值(GPP)产品,并根据卫星观测和气象数据进行不确定性估计。第二,他们将使用氖数据沿着来自卫星的太阳诱导叶绿素荧光(SIF)数据来开发具有不确定性估计的网格化互补GPP产品。第三,他们将利用来自氖和网格化GPP产品的多个异构数据集来量化美国土地碳汇潜力,并评估氖数据约束参数估计和模型预测的有效性。第四,他们将开发一个多模型集合,以了解通量与基于池的数据对模型预测中结构不确定性的约束。第五,他们将应用数据同化技术来量化参数不确定性,并评估多个与单个NEON数据集对三种不同模型参数估计的约束。多个与单个氖数据集对三种不同模型参数估计的约束。最后,他们将评估美国的土地碳汇,其不确定性和监管机制与氖数据为基础的网格通量产品,氖数据训练模型,和可追溯性框架。该项目最终将通过不确定性分析为改进模型和氖观测提供反馈。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Microbe-iron interactions control lignin decomposition in soil
  • DOI:
    10.1016/j.soilbio.2022.108803
  • 发表时间:
    2022-08
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
    Cuijuan Liao;Wenjuan Huang;Jon Wells;Ruiying Zhao;K. Allen;E. Hou;Xin Huang;Han Qiu;F. Ta
  • 通讯作者:
    Cuijuan Liao;Wenjuan Huang;Jon Wells;Ruiying Zhao;K. Allen;E. Hou;Xin Huang;Han Qiu;F. Ta
Microbial Models for Simulating Soil Carbon Dynamics: A Review
Across‐model spread and shrinking in predicting peatland carbon dynamics under global change
  • DOI:
    10.1111/gcb.16643
  • 发表时间:
    2023-02
  • 期刊:
  • 影响因子:
    11.6
  • 作者:
    E. Hou;Shuang Ma;Yuanyuan Huang;Yu Zhou;Hyung-Sub Kim;E. López-Blanco;Lifen Jiang;J. Xia;F. Tao;Christopher Williams;M. Williams;D. Ricciuto;P. Hanson;Yiqi Luo
  • 通讯作者:
    E. Hou;Shuang Ma;Yuanyuan Huang;Yu Zhou;Hyung-Sub Kim;E. López-Blanco;Lifen Jiang;J. Xia;F. Tao;Christopher Williams;M. Williams;D. Ricciuto;P. Hanson;Yiqi Luo
Matrix Approach to Accelerate Spin‐Up of CLM5
加速 CLM5 旋转的矩阵方法
  • DOI:
    10.1029/2023ms003625
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    6.8
  • 作者:
    Liao, Cuijuan;Lu, Xingjie;Huang, Yuanyuan;Tao, Feng;Lawrence, David M.;Koven, Charles D.;Oleson, Keith W.;Wieder, William R.;Kluzek, Erik;Huang, Xiaomeng
  • 通讯作者:
    Huang, Xiaomeng
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yiqi Luo其他文献

Winter warming in Alaska accelerates lignin decomposition contributed by Proteobacteria
阿拉斯加冬季变暖加速了变形菌引起的木质素分解
  • DOI:
    10.1186/s40168-020-00838-5
  • 发表时间:
    2020-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xuanyu Tao;Jiajie Feng;Yunfeng Yang;Gangsheng Wang;Renmao Tian;Fenliang Fan;Daliang Ning;Colin T. Bates;Lauren Hale;Mengting Yuan;Liyou Wu;Qun Gao;Jiesi Lei;Edward A. G. Schuur;Julian Yu;Rosvel Bracho;Yiqi Luo;Konstantinos T. Konstantinidis;Eric R. Johnst
  • 通讯作者:
    Eric R. Johnst
Alterations in soil bacterial community in relation to Spartina alterniflora Loisel. invasion chronosequence in the eastern Chinese coastal wetlands
与互花米草相关的土壤细菌群落变化。
  • DOI:
    10.1016/j.apsoil.2018.11.009
  • 发表时间:
    2019-03
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    Wen Yang;Nasreen Jeelani;Zhihong Zhu;Yiqi Luo;Xiaoli Cheng;Shuqing An
  • 通讯作者:
    Shuqing An
Temporal and Spatial Variations in Soil Respiration
土壤呼吸的时空变化
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yiqi Luo;Xuhui Zhou
  • 通讯作者:
    Xuhui Zhou
Optimized Separation of Isoquinoline Alkaloids in Thalictrum Herbal Medicine by Microemulsion Electrokinetic Chromatography
微乳电动色谱法优化唐松草中异喹啉生物碱的分离
Forecasting Responses of a Northern Peatland Carbon Cycle to Elevated CO2 and a Gradient of Experimental Warming
预测北部泥炭地碳循环对二氧化碳升高和实验变暖梯度的响应
  • DOI:
    10.1002/2017jg004040
  • 发表时间:
    2018-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jiang Jiang;Yuanyuan Huang;Shuang Ma;Mark Stacy;Zheng Shi;Daniel M. Ricciuto;Paul J. Hanson;Yiqi Luo
  • 通讯作者:
    Yiqi Luo

Yiqi Luo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yiqi Luo', 18)}}的其他基金

Collaborative Research: MRA: Constraining the continental-scale terrestrial carbon cycle using NEON data
合作研究:MRA:使用 NEON 数据约束大陆尺度的陆地碳循环
  • 批准号:
    2017884
  • 财政年份:
    2020
  • 资助金额:
    $ 44.87万
  • 项目类别:
    Standard Grant
Training courses on the matrix approach to modeling land carbon and nitrogen cycles; 2018-2021: Flagstaff, AZ
关于模拟土地碳和氮循环的矩阵方法的培训课程;
  • 批准号:
    1838972
  • 财政年份:
    2018
  • 资助金额:
    $ 44.87万
  • 项目类别:
    Standard Grant
Collaborative Research: Grassland Sensitivity to Climate Change at Local to Regional Scales: Assessing the Role of Ecosystem Attributes vs. Environmental Context
合作研究:地方到区域尺度上草地对气候变化的敏感性:评估生态系统属性与环境背景的作用
  • 批准号:
    1807529
  • 财政年份:
    2017
  • 资助金额:
    $ 44.87万
  • 项目类别:
    Continuing Grant
EAGER: Collaborative Research: Environmental Variability at Dryland Ecotones
EAGER:合作研究:旱地生态交错带的环境变化
  • 批准号:
    1748135
  • 财政年份:
    2017
  • 资助金额:
    $ 44.87万
  • 项目类别:
    Standard Grant
Collaborative Research: Grassland Sensitivity to Climate Change at Local to Regional Scales: Assessing the Role of Ecosystem Attributes vs. Environmental Context
合作研究:地方到区域尺度上草地对气候变化的敏感性:评估生态系统属性与环境背景的作用
  • 批准号:
    1137293
  • 财政年份:
    2012
  • 资助金额:
    $ 44.87万
  • 项目类别:
    Continuing Grant
RCN: Forecasts Of Resource and Environmental Changes: data Assimilation Science and Technology (FORECAST)
RCN:资源和环境变化预测:数据同化科学与技术(FORECAST)
  • 批准号:
    0840964
  • 财政年份:
    2009
  • 资助金额:
    $ 44.87万
  • 项目类别:
    Continuing Grant
DOE-NSF Workshop: Coordinated Approaches to Address Long-Term Issues in Global Change Experiments, to be held on August 13-14, 2009, at the Hyatt in Bethesda, MD
DOE-NSF 研讨会:解决全球变化实验中长期问题的协调方法,将于 2009 年 8 月 13 日至 14 日在马里兰州贝塞斯达凯悦酒店举行
  • 批准号:
    0938795
  • 财政年份:
    2009
  • 资助金额:
    $ 44.87万
  • 项目类别:
    Standard Grant
Development of a Data Assimilation Capability Towards Ecological Forecasting in a Data-Rich Era
数据丰富时代生态预测的数据同化能力发展
  • 批准号:
    0850290
  • 财政年份:
    2009
  • 资助金额:
    $ 44.87万
  • 项目类别:
    Standard Grant
LTREB: Effects of Warming and Clipping on Coupling of Carbon and Water Cycles in a Tallgrass Prairie
LTREB:变暖和削剪对高草草原碳和水循环耦合的影响
  • 批准号:
    0743778
  • 财政年份:
    2008
  • 资助金额:
    $ 44.87万
  • 项目类别:
    Continuing Grant
Workshop: Data-Model Assimilation in Ecology: Techniques and Applications, July 2007
研讨会:生态学中的数据模型同化:技术与应用,2007 年 7 月
  • 批准号:
    0714142
  • 财政年份:
    2007
  • 资助金额:
    $ 44.87万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: MRA: A functional model of soil organic matter composition at continental scale
合作研究:MRA:大陆尺度土壤有机质组成的功能模型
  • 批准号:
    2307253
  • 财政年份:
    2024
  • 资助金额:
    $ 44.87万
  • 项目类别:
    Standard Grant
Collaborative Research: MRA: A functional model of soil organic matter composition at continental scale
合作研究:MRA:大陆尺度土壤有机质组成的功能模型
  • 批准号:
    2307251
  • 财政年份:
    2024
  • 资助金额:
    $ 44.87万
  • 项目类别:
    Standard Grant
Collaborative Research: MRA: A functional model of soil organic matter composition at continental scale
合作研究:MRA:大陆尺度土壤有机质组成的功能模型
  • 批准号:
    2307252
  • 财政年份:
    2024
  • 资助金额:
    $ 44.87万
  • 项目类别:
    Standard Grant
Collaborative Research: MRA: Resolving and scaling litter decomposition controls from leaf to landscape in North American drylands
合作研究:MRA:解决和扩展北美旱地从树叶到景观的垃圾分解控制
  • 批准号:
    2307195
  • 财政年份:
    2024
  • 资助金额:
    $ 44.87万
  • 项目类别:
    Continuing Grant
Collaborative Research: MRA: Resolving and scaling litter decomposition controls from leaf to landscape in North American drylands
合作研究:MRA:解决和扩展北美旱地从树叶到景观的垃圾分解控制
  • 批准号:
    2307197
  • 财政年份:
    2024
  • 资助金额:
    $ 44.87万
  • 项目类别:
    Continuing Grant
Collaborative Research: MRA: Resolving and scaling litter decomposition controls from leaf to landscape in North American drylands
合作研究:MRA:解决和扩展北美旱地从树叶到景观的垃圾分解控制
  • 批准号:
    2307196
  • 财政年份:
    2024
  • 资助金额:
    $ 44.87万
  • 项目类别:
    Continuing Grant
Collaborative Research: MRA: A functional model of soil organic matter composition at continental scale
合作研究:MRA:大陆尺度土壤有机质组成的功能模型
  • 批准号:
    2307254
  • 财政年份:
    2024
  • 资助金额:
    $ 44.87万
  • 项目类别:
    Standard Grant
Collaborative Research: MRA: Particulates in canopy flowpaths: A missing mass flux at the macrosystem scale?
合作研究:MRA:冠层流动路径中的颗粒物:宏观系统尺度上缺失的质量通量?
  • 批准号:
    2320976
  • 财政年份:
    2023
  • 资助金额:
    $ 44.87万
  • 项目类别:
    Standard Grant
Collaborative Research: MRA: On thin ice- implications of shorter winters for the future of freshwater phytoplankton phenology and function
合作研究:MRA:薄冰——较短冬季对淡水浮游植物物候和功能未来的影响
  • 批准号:
    2306896
  • 财政年份:
    2023
  • 资助金额:
    $ 44.87万
  • 项目类别:
    Continuing Grant
Collaborative Research: MRA: Elucidating the multi-dimensionality and scaling of avian diversity-vegetation relationships
合作研究:MRA:阐明鸟类多样性与植被关系的多维性和尺度
  • 批准号:
    2307188
  • 财政年份:
    2023
  • 资助金额:
    $ 44.87万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了