The Impacts of Predictable Income Volatility and Income Risk on Economic Outcomes and Behaviors

可预测的收入波动和收入风险对经济成果和行为的影响

基本信息

  • 批准号:
    2242588
  • 负责人:
  • 金额:
    $ 30.09万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-03-15 至 2025-02-28
  • 项目状态:
    未结题

项目摘要

The income of poor people is not only low, but also unstable and unpredictable. Despite this income instability and its potential costs on the wellbeing of the poor, economists, measure of the effects of this instability and unpredictability is limited. This research will use field experiments to study how income instability affects the economic behavior and wellbeing of the poor. The project involves experimentally manipulating the labor demand for casual work of low wage labor during a period when little other work is available and then study the impact of income instability on consumption, savings, investment other activities as well as investigate the strategies households use to cope with income instability. The research will also collect data on individuals perceived costs of income instability to measure their willingness to pay to avoid income instability. The project will provide evidence on the importance of stabilizing incomes as a policy goal. The results of this research will provide guidance on labor market policies that will improve the lives of low-income workers. In so doing, it will help to establish the US as a global leader in improving the living standards of low-income workers.This research will study the causal effects of income risk and of predictable income volatility on economic outcomes and on welfare. To generate exogenous variation in income instability, the PIs experimentally manipulate the labor demand for casual work during a time when there are no alternatives. The RCT design has three arms: the Stable (S) arm has fixed pay scale and workdays; fluctuations in pay scale and workdays in the Predictable Volatility (PV) arm will be known in advance to workers while fluctuations in pay scale and workdays in the Risky Income (RI) arm will be unknown to the workers. The expected, number of workdays and pay of all three arms will be the same. Besides baseline data, high frequency panel data on consumption, expenditures, income, savings and assets, loans and debt, and transfers will be collected. The design and empirical analysis will allow the PIs to study the impact of income instability on consumption levels and smoothing and to investigate in detail the strategies used to cope with income instability. In addition to reduced-form analyses, the research will estimate a structural model to conduct a welfare analysis and simulate policy counterfactuals. The PIs will measure the perceived welfare costs of income instability by eliciting individuals’ willingness to pay to avoid predictable income volatility. The PIs will use the structural model to shed further light on mechanisms, to estimate the welfare costs of income instability, and to simulate policy counterfactuals. The results of this research will help guide labor market policies that stabilizes worker incomes and thus improve the living standards of the working poor.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
贫困人口的收入不仅低,而且不稳定、不可预测。 尽管这种收入不稳定及其对穷人福祉的潜在成本,但经济学家对这种不稳定性和不可预测性的影响的衡量是有限的。这项研究将使用实地实验来研究收入不稳定如何影响穷人的经济行为和福祉。 该项目涉及在几乎没有其他工作的情况下,实验性地操纵对低工资劳动力的临时工作的劳动力需求,然后研究收入不稳定对消费、储蓄、投资等活动的影响,并调查家庭用于科普收入不稳定的策略。这项研究还将收集关于个人认为收入不稳定的成本的数据,以衡量他们为避免收入不稳定而支付费用的意愿。 该项目将证明稳定收入作为一项政策目标的重要性。 这项研究的结果将为改善低收入工人生活的劳动力市场政策提供指导。 这项研究将研究收入风险和可预测的收入波动对经济结果和福利的因果影响。为了产生收入不稳定性的外生变化,PI实验性地操纵临时工作的劳动力需求,在没有替代品的情况下。 随机对照试验设计有三个分支:稳定(S)分支有固定的薪级表和工作日;可预测波动率(PV)分支中薪级表和工作日的波动将提前为工人所知,而风险收入(RI)分支中薪级表和工作日的波动将不为工人所知。 所有三个部门的预期工作日数和工资将是相同的。除了基线数据外,还将收集关于消费、支出、收入、储蓄和资产、贷款和债务以及转移的高频面板数据。设计和实证分析将使PI能够研究收入不稳定对消费水平和平滑的影响,并详细调查用于科普收入不稳定的策略。除了简化形式的分析,研究将估计一个结构模型进行福利分析和模拟政策的反事实。PI将通过引出个人为避免可预测的收入波动而支付的意愿来衡量收入不稳定的感知福利成本。 PI将使用结构模型进一步阐明机制,估计收入不稳定的福利成本,并模拟政策反事实。 该研究成果将有助于指导劳动力市场政策,稳定劳动者收入,从而提高贫困劳动者的生活水平。该奖项反映了NSF的法定使命,通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Leandro Carvalho其他文献

Techniques for eliciting IoT requirements: Sensorina Map and Mind IoT
引出物联网需求的技术:Sensorina 图和 Mind IoT
  • DOI:
    10.1016/j.jss.2024.112323
  • 发表时间:
    2025-04-01
  • 期刊:
  • 影响因子:
    4.100
  • 作者:
    Sabrina Souza;Eriky Rodrigues;Maria Meireles;Tanara Lauschner;Leandro Carvalho;José Carlos Maldonado;Tayana Conte
  • 通讯作者:
    Tayana Conte

Leandro Carvalho的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Leandro Carvalho', 18)}}的其他基金

The Effects of Education on Behavioral Decision-Making
教育对行为决策的影响
  • 批准号:
    1261040
  • 财政年份:
    2014
  • 资助金额:
    $ 30.09万
  • 项目类别:
    Standard Grant

相似海外基金

CIF: Small: NSF-DST: Zak-OTFS - How to Make Communication and Radar Sensing More Predictable in 6G
CIF:小型:NSF-DST:Zak-OTFS - 如何使 6G 中的通信和雷达传感更具可预测性
  • 批准号:
    2342690
  • 财政年份:
    2024
  • 资助金额:
    $ 30.09万
  • 项目类别:
    Standard Grant
Is evolution predictable? Unlocking fundamental biological insights using new machine learning methods
进化是可预测的吗?
  • 批准号:
    MR/X033880/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30.09万
  • 项目类别:
    Fellowship
Why do some types of biotic change produce predictable ecological, evolutionary and life history strategy change?
为什么某些类型的生物变化会产生可预测的生态、进化和生活史策略变化?
  • 批准号:
    EP/Y029720/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30.09万
  • 项目类别:
    Research Grant
Modular chemocatalysts for tunable and predictable C-H functionalization
用于可调节和可预测的 C-H 官能化的模块化化学催化剂
  • 批准号:
    2247217
  • 财政年份:
    2023
  • 资助金额:
    $ 30.09万
  • 项目类别:
    Standard Grant
Predictable Variations in Stochastic Calculus
随机微积分的可预测变化
  • 批准号:
    EP/Y024524/1
  • 财政年份:
    2023
  • 资助金额:
    $ 30.09万
  • 项目类别:
    Research Grant
SHF: Small: Predictable Performance for Just-in-Time Compilation
SHF:小型:可预测的即时编译性能
  • 批准号:
    2139612
  • 财政年份:
    2022
  • 资助金额:
    $ 30.09万
  • 项目类别:
    Standard Grant
Is degradation of photovoltaic modules predictable and preventable?
光伏组件的退化是否可以预测和预防?
  • 批准号:
    DE220100812
  • 财政年份:
    2022
  • 资助金额:
    $ 30.09万
  • 项目类别:
    Discovery Early Career Researcher Award
Development of potent and predictable Cas9 gene activation tools through high-throughput screening
通过高通量筛选开发有效且可预测的 Cas9 基因激活工具
  • 批准号:
    10440841
  • 财政年份:
    2022
  • 资助金额:
    $ 30.09万
  • 项目类别:
Development of potent and predictable Cas9 gene activation tools through high-throughput screening
通过高通量筛选开发有效且可预测的 Cas9 基因激活工具
  • 批准号:
    10670807
  • 财政年份:
    2022
  • 资助金额:
    $ 30.09万
  • 项目类别:
CNS Core: Small: Towards Timing-Predictable Autonomy in DNN-driven Embedded Systems
CNS 核心:小型:在 DNN 驱动的嵌入式系统中实现时序可预测的自主性
  • 批准号:
    2300525
  • 财政年份:
    2022
  • 资助金额:
    $ 30.09万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了