The Impacts of Predictable Income Volatility and Income Risk on Economic Outcomes and Behaviors

可预测的收入波动和收入风险对经济成果和行为的影响

基本信息

  • 批准号:
    2242588
  • 负责人:
  • 金额:
    $ 30.09万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-03-15 至 2025-02-28
  • 项目状态:
    未结题

项目摘要

The income of poor people is not only low, but also unstable and unpredictable. Despite this income instability and its potential costs on the wellbeing of the poor, economists, measure of the effects of this instability and unpredictability is limited. This research will use field experiments to study how income instability affects the economic behavior and wellbeing of the poor. The project involves experimentally manipulating the labor demand for casual work of low wage labor during a period when little other work is available and then study the impact of income instability on consumption, savings, investment other activities as well as investigate the strategies households use to cope with income instability. The research will also collect data on individuals perceived costs of income instability to measure their willingness to pay to avoid income instability. The project will provide evidence on the importance of stabilizing incomes as a policy goal. The results of this research will provide guidance on labor market policies that will improve the lives of low-income workers. In so doing, it will help to establish the US as a global leader in improving the living standards of low-income workers.This research will study the causal effects of income risk and of predictable income volatility on economic outcomes and on welfare. To generate exogenous variation in income instability, the PIs experimentally manipulate the labor demand for casual work during a time when there are no alternatives. The RCT design has three arms: the Stable (S) arm has fixed pay scale and workdays; fluctuations in pay scale and workdays in the Predictable Volatility (PV) arm will be known in advance to workers while fluctuations in pay scale and workdays in the Risky Income (RI) arm will be unknown to the workers. The expected, number of workdays and pay of all three arms will be the same. Besides baseline data, high frequency panel data on consumption, expenditures, income, savings and assets, loans and debt, and transfers will be collected. The design and empirical analysis will allow the PIs to study the impact of income instability on consumption levels and smoothing and to investigate in detail the strategies used to cope with income instability. In addition to reduced-form analyses, the research will estimate a structural model to conduct a welfare analysis and simulate policy counterfactuals. The PIs will measure the perceived welfare costs of income instability by eliciting individuals’ willingness to pay to avoid predictable income volatility. The PIs will use the structural model to shed further light on mechanisms, to estimate the welfare costs of income instability, and to simulate policy counterfactuals. The results of this research will help guide labor market policies that stabilizes worker incomes and thus improve the living standards of the working poor.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
穷人的收入不仅很低,而且不稳定和不可预测。尽管收入不稳定及其对贫困,经济学的福祉的潜在成本,但对这种不稳定性的影响和不可预测性的影响是有限的。这项研究将使用现场实验来研究收入不稳定性如何影响穷人的经济行为和福祉。该项目涉及在几乎没有其他工作的时期内对低工资劳动的劳动力进行实验操纵,然后研究收入不稳定性对消费,储蓄和投资其他活动的影响,并调查家庭用来应对收入不稳定的策略。这项研究还将收集有关个人认为收入不稳定成本的数据,以衡量其愿意付费以避免收入不稳定的意愿。该项目将提供有关将收入作为政策目标的重要性的证据。这项研究的结果将为劳动力市场政策提供指导,以改善低收入工人的生活。这样一来,这将有助于建立美国作为改善低收入工人的生活水平的全球领导者。这项研究将研究伤害风险和可预测的收入波动对经济成果和福利的因果关系。为了在收入不稳定的外来差异中产生外源性差异,PIS实验可以在劳动力的需求中对劳动工作进行实验,而在时间上进行了偶然的工作。 RCT设计有三个臂:稳定的臂齐薪级和工作日;工资量表的波动和可预测波动率(PV)部门的工作日的波动将事先向工人知道,而工人的薪水规模和工作日的波动将是工人不知道的。所有三个武器的预期,工作日和薪水的数量将相同。除基线数据外,还将收集有关消费,支出,收入,储蓄和资产,贷款和债务的高频面数据。设计和经验分析将使PI研究收入不稳定性对消费水平和平滑的影响,并详细研究用于应对收入不稳定的策略。除了减少形式的分析外,该研究还将估算一个结构模型,以进行福利分析并模拟政策反事实。 PI将通过引起个人愿意付费以避免可预测收入波动的意愿来衡量收入不稳定的福利成本。 PI将使用结构模型进一步阐明机制,估计收入不稳定的福利成本,并模拟政策反事实。这项研究的结果将有助于指导稳定工人收入,从而提高工作贫困人口的生活水平的劳动力市场政策。该奖项反映了NSF的法定使命,并通过使用基金会的知识分子优点和更广泛的影响评估标准来评估我们被认为是诚实的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Leandro Carvalho其他文献

Leandro Carvalho的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Leandro Carvalho', 18)}}的其他基金

The Effects of Education on Behavioral Decision-Making
教育对行为决策的影响
  • 批准号:
    1261040
  • 财政年份:
    2014
  • 资助金额:
    $ 30.09万
  • 项目类别:
    Standard Grant

相似国自然基金

“不流动”的日常实践与身份“邂逅”——公众旅游抵制行为的规律性和可预测性研究
  • 批准号:
    42301260
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
北大西洋年代际海温型交替转换对东亚夏季降水的影响和可预测性研究
  • 批准号:
    42375025
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
开发新型可预测生物年龄和疾病风险的表观遗传和转录组分子时钟
  • 批准号:
    32370699
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
印度洋海洋热浪:预测模型的建立及可预测性研究
  • 批准号:
    42306030
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
数据中心网络延时可预测的流量管理机制研究
  • 批准号:
    62302524
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CIF: Small: NSF-DST: Zak-OTFS - How to Make Communication and Radar Sensing More Predictable in 6G
CIF:小型:NSF-DST:Zak-OTFS - 如何使 6G 中的通信和雷达传感更具可预测性
  • 批准号:
    2342690
  • 财政年份:
    2024
  • 资助金额:
    $ 30.09万
  • 项目类别:
    Standard Grant
Is evolution predictable? Unlocking fundamental biological insights using new machine learning methods
进化是可预测的吗?
  • 批准号:
    MR/X033880/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30.09万
  • 项目类别:
    Fellowship
Why do some types of biotic change produce predictable ecological, evolutionary and life history strategy change?
为什么某些类型的生物变化会产生可预测的生态、进化和生活史策略变化?
  • 批准号:
    EP/Y029720/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30.09万
  • 项目类别:
    Research Grant
Modular chemocatalysts for tunable and predictable C-H functionalization
用于可调节和可预测的 C-H 官能化的模块化化学催化剂
  • 批准号:
    2247217
  • 财政年份:
    2023
  • 资助金额:
    $ 30.09万
  • 项目类别:
    Standard Grant
Predictable Variations in Stochastic Calculus
随机微积分的可预测变化
  • 批准号:
    EP/Y024524/1
  • 财政年份:
    2023
  • 资助金额:
    $ 30.09万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了