Integrating Remote Sensing and Deep Learning for Predictive Surveillance of Mine Tailings Impoundments

集成遥感和深度学习对尾矿库进行预测监测

基本信息

  • 批准号:
    2242668
  • 负责人:
  • 金额:
    $ 39.95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2024-01-31
  • 项目状态:
    已结题

项目摘要

The impacts of climate change have led to an increase in extreme weather events, posing significant challenges to infrastructure resilience and community well-being. Research supported by this Disaster Resilience Research Grant (DRRG) project addresses the critical need to monitor and maintain existing infrastructure in the face of these challenges. Specifically, it focuses on mine tailings impoundments, massive geotechnical structures that store mining waste. The failure of these structures during extreme weather events can cause environmental damage and loss of life. By leveraging satellite imagery analysis, weather data, and deep learning techniques, this project aims to establish a standard monitoring approach for mine tailings impoundments and revolutionize infrastructure monitoring and hazard management. The outcomes will enable the identification of movements within these structures and provide a predictive understanding of failure probability, allowing us to act proactively and prevent disasters. This monitoring approach will enhance community resilience, support hazard management, and establish critical risk profiles for surrounding areas.The research aims to develop standards for monitoring mine tailings impoundments following their exposure to extreme weather events. The project's research objectives include: (i) analyzing the utility of satellite-based radar stacking techniques and moisture estimates to characterize the temporal performance of mine tailings impoundments; (ii) utilizing geotechnical engineering concepts and satellite observations to characterize the life-cycle of the mine tailings impoundments; (iii) developing standards for monitoring the failure risk profile of mine tailings impoundments utilizing deep learning models applied to satellite observations, environmental data, and extreme event information. By advancing our knowledge in this area, the project has interdisciplinary implications for remote sensing, geoengineering, computer science, and natural hazards engineering. Fusing these disciplines will result in a cost-effective and nonintrusive monitoring methodology that can reduce the consequences of infrastructure failures and provide timely warnings to mitigate hazards. The project's broader impacts include fostering the development of a diverse STEM workforce, improving community safety, and ensuring accessibility to potential end-users through conferences, journals, and online platforms. The ultimate goal is to prevent future disasters and enhance the well-being of both humans and anthropogenic infrastructure.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
气候变化的影响导致极端天气事件增加,对基础设施抵御能力和社区福祉构成重大挑战。灾害恢复研究基金(DRRG)项目支持的研究解决了在面临这些挑战时监测和维护现有基础设施的关键需求。具体来说,它侧重于矿山尾矿库,即储存采矿废物的大型岩土结构。这些结构在极端天气事件中发生故障会造成环境破坏和生命损失。通过利用卫星图像分析、天气数据和深度学习技术,该项目旨在建立矿山尾矿库的标准监测方法,并彻底改变基础设施监测和灾害管理。结果将能够识别这些结构内的运动,并提供对故障概率的预测性理解,使我们能够主动采取行动并预防灾难。这种监测方法将增强社区的复原力,支持灾害管理,并为周边地区建立关键风险概况。本研究旨在制定极端天气事件下矿山尾矿库监测标准。该项目的研究目标包括:(i)分析基于卫星的雷达叠加技术和水分估算的效用,以表征矿山尾矿库的时间性能;利用岩土工程概念和卫星观测来描述矿山尾矿库的生命周期;(iii)利用应用于卫星观测、环境数据和极端事件信息的深度学习模型,制定监测矿山尾矿库失效风险概况的标准。通过提高我们在这一领域的知识,该项目具有遥感、地球工程、计算机科学和自然灾害工程的跨学科意义。融合这些原则将产生一种具有成本效益和非侵入性的监测方法,可以减少基础设施故障的后果,并提供及时的警告以减轻危害。该项目更广泛的影响包括促进STEM劳动力多样化的发展,改善社区安全,并确保潜在最终用户通过会议、期刊和在线平台获得这些信息。最终目标是防止未来的灾难,增进人类和人为基础设施的福祉。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thomas Oommen其他文献

Individual Fairness Under Uncertainty
不确定性下的个人公平
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wenbin Zhang;Zichong Wang;Juyong Kim;Cheng Cheng;Thomas Oommen;Pradeep Ravikumar;Jeremy C. Weiss
  • 通讯作者:
    Jeremy C. Weiss
Spatio-temporal interpolation of ~530 Ma paleo-DEM to quantify denudation of a terrestrial impact crater
对约 5.3 亿年古数字高程模型(paleo-DEM)进行时空插值以量化一个陆地撞击坑的剥蚀作用
  • DOI:
    10.1016/j.geomorph.2025.109644
  • 发表时间:
    2025-04-01
  • 期刊:
  • 影响因子:
    3.300
  • 作者:
    J. Aswathi;S. James;S. Keerthy;A. Rajaneesh;V.R. Rani;K.S. Sajinkumar;Thomas Oommen;R.B. Binoj Kumar
  • 通讯作者:
    R.B. Binoj Kumar
A Study of the Impacts of Freeze–Thaw on Cliff Recession at the Calvert Cliffs in Calvert County, Maryland
  • DOI:
    10.1007/s10706-014-9792-1
  • 发表时间:
    2014-06-13
  • 期刊:
  • 影响因子:
    2.000
  • 作者:
    Bonnie Zwissler;Thomas Oommen;Stan Vitton
  • 通讯作者:
    Stan Vitton
PyLandslide: A Python tool for landslide susceptibility mapping and uncertainty analysis
PyLandslide:用于滑坡敏感性绘图和不确定性分析的 Python 工具
Suitability of the height above nearest drainage (HAND) model for flood inundation mapping in data-scarce regions: a comparative analysis with hydrodynamic models
最近排水系统上方高度 (HAND) 模型对数据稀缺地区洪水淹没绘图的适用性:与水动力模型的比较分析
  • DOI:
    10.1007/s12145-023-01218-x
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Navin Tony Thalakkottukara;Jobin Thomas;Melanie K. Watkins;Benjamin C. Holland;Thomas Oommen;Himanshu Grover
  • 通讯作者:
    Himanshu Grover

Thomas Oommen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thomas Oommen', 18)}}的其他基金

Integrating Remote Sensing and Deep Learning for Predictive Surveillance of Mine Tailings Impoundments
集成遥感和深度学习对尾矿库进行预测监测
  • 批准号:
    2414588
  • 财政年份:
    2023
  • 资助金额:
    $ 39.95万
  • 项目类别:
    Standard Grant
SCC-CIVIC-PG Track B: Helping Rural Counties to Enhance Flooding and Coastal Disaster Resilience and Adaptation
SCC-CIVIC-PG 轨道 B:帮助农村县增强洪水和沿海灾害的抵御能力和适应能力
  • 批准号:
    2042881
  • 财政年份:
    2021
  • 资助金额:
    $ 39.95万
  • 项目类别:
    Standard Grant
A Crowdsourced Knowledge Base for the Damage Assessment of Extreme Events
极端事件损害评估的众包知识库
  • 批准号:
    1300720
  • 财政年份:
    2013
  • 资助金额:
    $ 39.95万
  • 项目类别:
    Standard Grant

相似国自然基金

相似海外基金

Integrating Remote Sensing and Deep Learning for Predictive Surveillance of Mine Tailings Impoundments
集成遥感和深度学习对尾矿库进行预测监测
  • 批准号:
    2414588
  • 财政年份:
    2023
  • 资助金额:
    $ 39.95万
  • 项目类别:
    Standard Grant
ORE-CZ: Integrating Vegetation Phenology to Understand the Sensitivity of Dynamic Water Storage to Drought Using Remote Sensing Data and Hydrology Modeling
ORE-CZ:利用遥感数据和水文学模型,整合植被物候学来了解动态蓄水对干旱的敏感性
  • 批准号:
    2228047
  • 财政年份:
    2023
  • 资助金额:
    $ 39.95万
  • 项目类别:
    Standard Grant
Study on simultaneous assimilation of multiple aerosol elements by integrating remote sensing and numerical modeling
遥感与数值模拟相结合的多种气溶胶成分同时同化研究
  • 批准号:
    22H00562
  • 财政年份:
    2022
  • 资助金额:
    $ 39.95万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Integrating measures of grassland function using Remote Sensing
利用遥感综合测量草地功能
  • 批准号:
    RGPIN-2022-04471
  • 财政年份:
    2022
  • 资助金额:
    $ 39.95万
  • 项目类别:
    Discovery Grants Program - Individual
Precision Farming of the Hidden Half: Integrating Roots into Agriculture using Remote Sensing
隐秘的精准农业:利用遥感将根源融入农业
  • 批准号:
    DGECR-2022-00157
  • 财政年份:
    2022
  • 资助金额:
    $ 39.95万
  • 项目类别:
    Discovery Launch Supplement
Precision Farming of the Hidden Half: Integrating Roots into Agriculture using Remote Sensing
隐秘的精准农业:利用遥感将根源融入农业
  • 批准号:
    RGPNS-2022-04861
  • 财政年份:
    2022
  • 资助金额:
    $ 39.95万
  • 项目类别:
    Discovery Grants Program - Northern Research Supplement
Precision Farming of the Hidden Half: Integrating Roots into Agriculture using Remote Sensing
隐秘的精准农业:利用遥感将根源融入农业
  • 批准号:
    RGPIN-2022-04861
  • 财政年份:
    2022
  • 资助金额:
    $ 39.95万
  • 项目类别:
    Discovery Grants Program - Individual
MSA: Integrating multi-scale remote sensing and mechanistic modeling to assess riparian ecosystem dynamics and feedbacks to hydroclimate variability
MSA:整合多尺度遥感和机械建模来评估河岸生态系统动态和对水文气候变化的反馈
  • 批准号:
    2106030
  • 财政年份:
    2021
  • 资助金额:
    $ 39.95万
  • 项目类别:
    Standard Grant
Integrating measures of grassland function using Remote Sensing
利用遥感综合测量草地功能
  • 批准号:
    RGPIN-2016-03960
  • 财政年份:
    2021
  • 资助金额:
    $ 39.95万
  • 项目类别:
    Discovery Grants Program - Individual
Integrating remote sensing, machine learning, and advanced ocean modeling for the improved prediction of coastal change
集成遥感、机器学习和先进的海洋建模,以改进海岸变化的预测
  • 批准号:
    2618981
  • 财政年份:
    2021
  • 资助金额:
    $ 39.95万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了