A Crowdsourced Knowledge Base for the Damage Assessment of Extreme Events
极端事件损害评估的众包知识库
基本信息
- 批准号:1300720
- 负责人:
- 金额:$ 32.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-07-01 至 2018-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The use of crowdsourced volunteers to analyze remote sensing imagery is a relatively new damage assessment approach, developed in the wake of the 2008 Sichuan earthquake, and formalized during the 2010 Haiti and 2011 New Zealand earthquakes. This approach is enabled by the advent of Web 2.0 technologies and the ubiquity of free remote sensing images that are synoptic with high spatial-, spectral- and temporal-resolutions. The demonstrated benefit was a speedup by a factor of two or three in the delivery of damage estimates. However, the success of this manual crowdsourced approach for damage assessment is dependent upon the size and reliability of the crowd. This research will focus on a new framework called BACKBOnE (Building A Crowdsourced Knowledge Base of Extreme Events) for extreme event damage assessment utilizing remotely sensed images that automatically finds and classifies damages, and builds a data-driven knowledge base of damage characteristics that can be reused during future events. BACKBOnE is a transformation of the manual crowdsourced approach for damage assessment and is unprecedented in the disasters community, combining the power of crowdsourcing with state-of-the-art methods from computer science and image processing. It replaces the manual effort with automated methods for object-based change detection and classification that increase the speed, reduce the cost of damage assessment, and scale well to increases in data volume. It shifts the crowd from its task of manual annotation to quality assurance feedback on the performance of automated methods via crowdsourced active learning. This improves assessment accuracy, while decoupling the framework's success from the size and reliability of the crowd because feedback is solicited from annotators scored favorably, and only on difficult cases. It also incorporates a multitude of remote sensing products and performs data fusion to unify their outputs into a common map of damage. This is a must-have characteristic of next-generation damage assessment as data volumes and products proliferate. The use of diverse data products, particularly imagery from high spatial resolutions and non-visible bands that are less sensitive to weather and solar illumination, will better discriminate certain damage types.The broader impact of the research is the reduction of the overall human and financial cost of extreme events by contributing new methods for rapid and accurate damage estimates used for Post-Disaster Needs Assessment (PDNA). The curation of a knowledge base builds effective models quickly when a disaster strikes, refines damage predictions in event simulations that assess vulnerability, and fosters better land-use planning that encourages the growth of disaster resilient communities. The work also includes a web-based damage assessment simulator that maps remotely sensed earthquake images from recent earthquake events to engage the greater public in disaster mitigation. In addition, the investigators will actively recruit graduate and undergraduate students from under-represented groups and mentor them within a multi-disciplinary collaboration. Machine learning students will learn about remote sensing and damage assessment, and geoengineering students will learn fundamentals of machine learning and statistical data analysis.
利用众包志愿者分析遥感图像是一种相对较新的灾害评估方法,在2008年四川地震之后发展起来,并在2010年海地地震和2011年新西兰地震期间正式确立。这种方法是由Web 2.0技术的出现和无处不在的免费遥感图像实现的,这些图像具有高空间、光谱和时间分辨率。所证明的好处是在交付损害估计方面加快了两到三倍。然而,这种人工众包损害评估方法的成功取决于人群的规模和可靠性。这项研究将集中在一个名为BACKBOnE(构建极端事件众包知识库)的新框架上,该框架利用遥感图像自动发现和分类极端事件的损害,并建立一个数据驱动的损害特征知识库,可以在未来的事件中重复使用。BACKBOnE是对人工众包方法进行损害评估的一种转变,在灾害界是前所未有的,它将众包的力量与计算机科学和图像处理的最先进方法相结合。它用基于对象的变化检测和分类的自动化方法取代了人工工作,从而提高了速度,降低了损坏评估的成本,并且可以很好地适应数据量的增加。它将人群从手工注释的任务转移到通过众包主动学习对自动化方法的性能进行质量保证反馈。这提高了评估的准确性,同时将框架的成功与人群的规模和可靠性解耦,因为反馈来自评分较高的注释者,而且只针对困难的情况。它还结合了多种遥感产品,并进行数据融合,将它们的输出统一到一个共同的损害地图中。随着数据量和产品的激增,这是下一代损伤评估必须具备的特征。使用各种数据产品,特别是来自高空间分辨率和对天气和太阳光照不太敏感的非可见光波段的图像,将更好地区分某些损害类型。这项研究的更广泛的影响是通过为灾后需求评估(PDNA)提供快速和准确的损失估计新方法,减少极端事件的总体人力和经济成本。当灾难来袭时,知识库的管理可以快速建立有效的模型,在评估脆弱性的事件模拟中改进损害预测,并促进更好的土地使用规划,从而鼓励抗灾社区的发展。这项工作还包括一个基于网络的损害评估模拟器,该模拟器绘制了最近地震事件的遥感地震图像,以使更多的公众参与减灾。此外,研究人员将积极从代表性不足的群体中招募研究生和本科生,并在多学科合作中指导他们。机器学习的学生将学习遥感和损害评估,地球工程的学生将学习机器学习和统计数据分析的基础知识。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas Oommen其他文献
Individual Fairness Under Uncertainty
不确定性下的个人公平
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Wenbin Zhang;Zichong Wang;Juyong Kim;Cheng Cheng;Thomas Oommen;Pradeep Ravikumar;Jeremy C. Weiss - 通讯作者:
Jeremy C. Weiss
Spatio-temporal interpolation of ~530 Ma paleo-DEM to quantify denudation of a terrestrial impact crater
对约 5.3 亿年古数字高程模型(paleo-DEM)进行时空插值以量化一个陆地撞击坑的剥蚀作用
- DOI:
10.1016/j.geomorph.2025.109644 - 发表时间:
2025-04-01 - 期刊:
- 影响因子:3.300
- 作者:
J. Aswathi;S. James;S. Keerthy;A. Rajaneesh;V.R. Rani;K.S. Sajinkumar;Thomas Oommen;R.B. Binoj Kumar - 通讯作者:
R.B. Binoj Kumar
A Study of the Impacts of Freeze–Thaw on Cliff Recession at the Calvert Cliffs in Calvert County, Maryland
- DOI:
10.1007/s10706-014-9792-1 - 发表时间:
2014-06-13 - 期刊:
- 影响因子:2.000
- 作者:
Bonnie Zwissler;Thomas Oommen;Stan Vitton - 通讯作者:
Stan Vitton
PyLandslide: A Python tool for landslide susceptibility mapping and uncertainty analysis
PyLandslide:用于滑坡敏感性绘图和不确定性分析的 Python 工具
- DOI:
10.1016/j.envsoft.2024.106055 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
M. Basheer;Thomas Oommen - 通讯作者:
Thomas Oommen
Suitability of the height above nearest drainage (HAND) model for flood inundation mapping in data-scarce regions: a comparative analysis with hydrodynamic models
最近排水系统上方高度 (HAND) 模型对数据稀缺地区洪水淹没绘图的适用性:与水动力模型的比较分析
- DOI:
10.1007/s12145-023-01218-x - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Navin Tony Thalakkottukara;Jobin Thomas;Melanie K. Watkins;Benjamin C. Holland;Thomas Oommen;Himanshu Grover - 通讯作者:
Himanshu Grover
Thomas Oommen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas Oommen', 18)}}的其他基金
Integrating Remote Sensing and Deep Learning for Predictive Surveillance of Mine Tailings Impoundments
集成遥感和深度学习对尾矿库进行预测监测
- 批准号:
2242668 - 财政年份:2023
- 资助金额:
$ 32.5万 - 项目类别:
Standard Grant
Integrating Remote Sensing and Deep Learning for Predictive Surveillance of Mine Tailings Impoundments
集成遥感和深度学习对尾矿库进行预测监测
- 批准号:
2414588 - 财政年份:2023
- 资助金额:
$ 32.5万 - 项目类别:
Standard Grant
SCC-CIVIC-PG Track B: Helping Rural Counties to Enhance Flooding and Coastal Disaster Resilience and Adaptation
SCC-CIVIC-PG 轨道 B:帮助农村县增强洪水和沿海灾害的抵御能力和适应能力
- 批准号:
2042881 - 财政年份:2021
- 资助金额:
$ 32.5万 - 项目类别:
Standard Grant
相似海外基金
Unifying Object Detection and Image Captioning using Vision-Language Knowledge Base for Open-World Comprehension
使用视觉语言知识库统一对象检测和图像描述以实现开放世界理解
- 批准号:
24K20830 - 财政年份:2024
- 资助金额:
$ 32.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
A Study on View Constuction for Application-oriented Graph Knowledge Base
面向应用的图知识库视图构建研究
- 批准号:
23H03401 - 财政年份:2023
- 资助金额:
$ 32.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Building a Chronological Knowledge Base for the Web in Japan
在日本建立一个按时间顺序排列的网络知识库
- 批准号:
22K18448 - 财政年份:2022
- 资助金额:
$ 32.5万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Curating a Knowledge Base for Individuals with Coinfection of HIV and SARS-CoV-2: EHR-based Data Mining
为 HIV 和 SARS-CoV-2 混合感染者打造知识库:基于 EHR 的数据挖掘
- 批准号:
10481286 - 财政年份:2022
- 资助金额:
$ 32.5万 - 项目类别:
CAREER: Establishing a Knowledge Base for Use and Discharge of Poly- and Perfluoroalkyl Substances
事业:建立多氟烷基物质和全氟烷基物质的使用和排放知识库
- 批准号:
2144550 - 财政年份:2022
- 资助金额:
$ 32.5万 - 项目类别:
Continuing Grant
An extensible brain knowledge base and toolset spanning modalities for multi-species data-driven cell types
可扩展的大脑知识库和工具集,涵盖多物种数据驱动细胞类型的模式
- 批准号:
10686977 - 财政年份:2022
- 资助金额:
$ 32.5万 - 项目类别:
Curating a Knowledge Base for Individuals with Coinfection of HIV and SARS-CoV-2: EHR-based Data Mining
为 HIV 和 SARS-CoV-2 混合感染者打造知识库:基于 EHR 的数据挖掘
- 批准号:
10665078 - 财政年份:2022
- 资助金额:
$ 32.5万 - 项目类别:
Improving Electronic Health Record Usability and Usefulness with a Patient-Specific Clinical Knowledge Base
通过患者特定的临床知识库提高电子健康记录的可用性和实用性
- 批准号:
10155135 - 财政年份:2021
- 资助金额:
$ 32.5万 - 项目类别:
DeFacto: Acquiring, Curating, and Using a Bilingual Domain Aware Commonsense Knowledge Base
DeFacto:获取、整理和使用双语领域感知常识知识库
- 批准号:
RGPIN-2017-05068 - 财政年份:2021
- 资助金额:
$ 32.5万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




