Collaborative Research: SaTC: CORE: Medium: Self-Learning and Self-Evolving Detection of Altered, Deceptive Images and Videos
协作研究:SaTC:核心:媒介:篡改、欺骗性图像和视频的自学习和自进化检测
基本信息
- 批准号:2243161
- 负责人:
- 金额:$ 55.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Forged and deceptive images and videos that not only appeal real to human eyes but also fool existing computer programs can now be generated by advanced artificial intelligent techniques, colloquially called "deepfake" techniques. Malicious parties can utilize the new techniques to swap a victim's face into uncomfortable or fictional scenes and damage that person's reputation. Deepfake techniques may be exploited to create false news, to affect results in election campaigns, to create chaos in financial markets, to fool the public with false disaster scenes, or to inflame public violence and increase conflict between nations. The objective of this project is to design an intelligent deepfake detector that will be capable of assessing the integrity of digital visual content and automatically detect falsified images or videos in real time and prevent them from spreading. The success of the proposed research will benefit our society by providing a more trustworthy and healthy environment for billions of social network users and ensuring the authenticity of visual content for digital forensics. The project team consists of two researchers with complementary expertise in image processing and cybersecurity. The project will significantly advance the state of the art in falsified visual content detection. The uniqueness of the proposed system is its ability of self-learning and self-evolving to capture altered and deceptive visual content generated by currently unknown deepfake algorithms over time. The proposed self-evolving mechanisms will allow a deepfake detector to quickly adapt to new types of forged images or videos with only a small number of samples, overcoming the limitation of limited samples in existing data-hungry learning algorithms. The proposed defensive mechanisms will ensure the robustness of the deepfake detector and prevent it from misclassifying camouflaged or obscured forged visual content as genuine content. The project will address false content detection and mitigate existing unresolved adversarial attacks in machine learning. The proposed lifelong learning mechanism will enable the deepfake detector to leverage accumulated knowledge to achieve self-improvement over time.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
伪造和欺骗性的图像和视频,不仅吸引人的眼睛真实的,但也愚弄现有的计算机程序,现在可以产生先进的人工智能技术,俗称“deepfake”技术。恶意方可以利用新技术将受害者的脸换成不舒服或虚构的场景,并损害此人的声誉。Deepfake技术可能被用来制造虚假新闻,影响竞选活动的结果,在金融市场制造混乱,用虚假的灾难场景愚弄公众,或煽动公共暴力和增加国家之间的冲突。该项目的目标是设计一种智能深度伪造检测器,能够评估数字视觉内容的完整性,并自动检测真实的伪造图像或视频,并防止它们传播。这项研究的成功将为数十亿社交网络用户提供一个更值得信赖和健康的环境,并确保数字取证的视觉内容的真实性,从而使我们的社会受益。 该项目团队由两名研究人员组成,他们在图像处理和网络安全方面具有互补的专业知识。该项目将大大推进伪造视觉内容检测的最新技术水平。该系统的独特之处在于其自学习和自进化的能力,以捕获随着时间的推移由目前未知的deepfake算法生成的改变和欺骗性视觉内容。所提出的自进化机制将允许深度伪造检测器快速适应仅具有少量样本的新型伪造图像或视频,克服现有数据饥饿学习算法中有限样本的限制。拟议的防御机制将确保deepfake检测器的鲁棒性,并防止其将隐藏或模糊的伪造视觉内容错误分类为真实内容。该项目将解决虚假内容检测问题,并减轻机器学习中现有的未解决的对抗性攻击。拟议的终身学习机制将使deepfake检测器能够利用积累的知识,随着时间的推移实现自我改进。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dan Lin其他文献
Effect of Shixiao San on inflammatory factors and pain in rats with endometriosis.
十消散对子宫内膜异位症大鼠炎症因子及疼痛的影响
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:5.4
- 作者:
Dandan Yue;Zihan Zheng;Weiwei Fan;L. Zhu;Dan Lin;Man Lu;Wenjing Ji;P. Cao;Xiaoyan Sun;Chunping Hu - 通讯作者:
Chunping Hu
Can Disclosure Quality Explain Dividend Payouts
披露质量可以解释股息支付吗
- DOI:
10.5539/ibr.v7n7p10 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Dan Lin;Hsien;Lie - 通讯作者:
Lie
Confidence and Prediction in Linear Mixed Models: Do Not Concatenate the Random Effects. Application in an Assay Qualification Study
线性混合模型中的置信度和预测:不要连接随机效应。
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
B. Francq;Dan Lin;W. Hoyer - 通讯作者:
W. Hoyer
Exploration of role of market in perishable goods
探索市场在易腐烂商品中的作用
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Dan Lin - 通讯作者:
Dan Lin
Cointegration analysis of tourism demand by Mainland China in Taiwan and stock investment strategy
中国大陆赴台旅游需求协整分析及股票投资策略
- DOI:
10.18533/jefs.v3i06.163 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Yu;Dan Lin;Lu Lin - 通讯作者:
Lu Lin
Dan Lin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dan Lin', 18)}}的其他基金
Collaborative Research: SaTC: CORE: Medium: Broad-Spectrum Facial Image Protection with Provable Privacy Guarantees
合作研究:SaTC:核心:中:具有可证明隐私保证的广谱面部图像保护
- 批准号:
2301014 - 财政年份:2022
- 资助金额:
$ 55.53万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Medium: Broad-Spectrum Facial Image Protection with Provable Privacy Guarantees
合作研究:SaTC:核心:中:具有可证明隐私保证的广谱面部图像保护
- 批准号:
2114141 - 财政年份:2021
- 资助金额:
$ 55.53万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Medium: Self-Learning and Self-Evolving Detection of Altered, Deceptive Images and Videos
协作研究:SaTC:核心:媒介:篡改、欺骗性图像和视频的自学习和自进化检测
- 批准号:
2027398 - 财政年份:2020
- 资助金额:
$ 55.53万 - 项目类别:
Standard Grant
EAGER: TWC: Collaborative: iPrivacy: Automatic Recommendation of Personalized Privacy Settings for Image Sharing
EAGER:TWC:协作:iPrivacy:自动推荐图像共享的个性化隐私设置
- 批准号:
1852554 - 财政年份:2018
- 资助金额:
$ 55.53万 - 项目类别:
Standard Grant
EAGER: TWC: Collaborative: iPrivacy: Automatic Recommendation of Personalized Privacy Settings for Image Sharing
EAGER:TWC:协作:iPrivacy:自动推荐图像共享的个性化隐私设置
- 批准号:
1651455 - 财政年份:2016
- 资助金额:
$ 55.53万 - 项目类别:
Standard Grant
MASTER: Missouri Advanced Security Training, Educa
硕士:密苏里州高级安全培训,Educa
- 批准号:
1433659 - 财政年份:2014
- 资助金额:
$ 55.53万 - 项目类别:
Continuing Grant
CSR: EAGER: Collaborative Research: Brokerage Services for the Next Generation Cloud
CSR:EAGER:协作研究:下一代云的经纪服务
- 批准号:
1250327 - 财政年份:2012
- 资助金额:
$ 55.53万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
- 批准号:
2330940 - 财政年份:2024
- 资助金额:
$ 55.53万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317232 - 财政年份:2024
- 资助金额:
$ 55.53万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338301 - 财政年份:2024
- 资助金额:
$ 55.53万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317233 - 财政年份:2024
- 资助金额:
$ 55.53万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338302 - 财政年份:2024
- 资助金额:
$ 55.53万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
- 批准号:
2330941 - 财政年份:2024
- 资助金额:
$ 55.53万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Small: Towards Secure and Trustworthy Tree Models
协作研究:SaTC:核心:小型:迈向安全可信的树模型
- 批准号:
2413046 - 财政年份:2024
- 资助金额:
$ 55.53万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: EDU: RoCCeM: Bringing Robotics, Cybersecurity and Computer Science to the Middled School Classroom
合作研究:SaTC:EDU:RoCCeM:将机器人、网络安全和计算机科学带入中学课堂
- 批准号:
2312057 - 财政年份:2023
- 资助金额:
$ 55.53万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Investigation of Naming Space Hijacking Threat and Its Defense
协作研究:SaTC:核心:小型:命名空间劫持威胁及其防御的调查
- 批准号:
2317830 - 财政年份:2023
- 资助金额:
$ 55.53万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Small: Towards a Privacy-Preserving Framework for Research on Private, Encrypted Social Networks
协作研究:SaTC:核心:小型:针对私有加密社交网络研究的隐私保护框架
- 批准号:
2318843 - 财政年份:2023
- 资助金额:
$ 55.53万 - 项目类别:
Continuing Grant