Collaborative Research: RESEARCH-PGR: Unraveling the origin of vegetative desiccation tolerance in vascular plants

合作研究:RESEARCH-PGR:揭示维管植物营养干燥耐受性的起源

基本信息

项目摘要

Climate change is increasing the frequency and severity of drought events around the world, leading to major losses in crop productivity, which affect future food security. Consequently, the generation of crops with enhanced drought tolerance represents an urgent need for breeders, scientists, and governments. Excessive water loss is lethal for most plants, but a few plants, known as resurrection plants, have the remarkable ability to survive almost complete dehydration of their green tissues. This ability, known as vegetative desiccation tolerance (VDT), relies upon a combination of molecular processes that allow the plant to maintain its viability in the dry state. Interestingly, all genes involved in VDT are also present in desiccation-susceptible plants, as most plants produce seeds that can survive for long periods in the dry state without losing the capacity to germinate upon watering. Therefore, the difference between tolerant and susceptible plants must be in their capacity to activate the mechanisms that protect cells against desiccation in green tissues and not only in the seed. The objective of this project is to identify the mechanisms of how plants evolved to activate desiccation tolerance in both vegetative and reproductive tissues. Specifically, this study seeks to identify the genes that act as master regulators of desiccation tolerance. This collaborative project will use a multidisciplinary approach to identify common and specific molecular processes by comparing the dynamic responses of green tissues and seeds. The results of this project will serve to design molecular breeding schemes for improving crop resilience to climate change.Excessive water loss is lethal for most plants, but a few species, known as resurrection plants, evolved the remarkable ability to survive almost complete dryness. This ability, known as desiccation tolerance (DT), relies upon a combination of physiological, biochemical, and molecular responses that allow the plant to preserve cell integrity in the dry state. Interestingly, all gene families involved in vegetative desiccation tolerance (VDT) are present in desiccation-sensitive plants, suggesting that this trait evolved primarily by changes in the regulatory networks coordinating the expression of DT genes rather than from the acquisition of new genes. The lack of accurate comparative analyses has hindered the identification of the regulators controlling VDT and the study of the evolutionary origin of this trait in vascular plants. Therefore, this collaborative project will determine the regulatory networks controlling VDT and infer its origin during vascular plant evolution by analyzing the DT response of key resurrection lineages using integrative methodologies. Specific objectives include (1) determining the kinetics of the global transcriptional changes in vegetative and reproductive tissues during the DT process, (2) performing kinetic analyses of the global metabolic changes in vegetative and reproductive tissues during the DT process, (3) performing in situ and single-cell type kinetic analysis of transcriptional and metabolomic changes of vegetative tissues during dehydration and recovery, and (4) conducting comparative analyses of the regulatory networks controlling DT in resurrection plants. This study will identify genetic-metabolic networks required to activate VDT, providing the basis for future crop breeding of enhanced drought tolerance.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
气候变化正在增加世界各地干旱事件的频率和严重程度,导致作物生产力的重大损失,影响未来的粮食安全。因此,培育耐旱性增强的作物是育种家、科学家和政府的迫切需要。对大多数植物来说,过度失水是致命的,但少数植物,被称为复活植物,具有惊人的生存能力,几乎完全脱水的绿色组织。这种能力,被称为营养脱水耐受性(VDT),依赖于一系列分子过程的组合,使植物能够在干燥状态下保持其生存力。有趣的是,所有涉及VDT的基因也存在于易干燥的植物中,因为大多数植物产生的种子可以在干燥状态下长时间存活,而不会失去浇水后发芽的能力。因此,耐受性和敏感性植物之间的区别一定在于它们激活保护绿色组织细胞免受干燥的机制的能力,而不仅仅是种子。本项目的目标是确定植物如何进化以激活营养和生殖组织的脱水耐受性的机制。具体来说,这项研究旨在确定基因作为主调节器的干燥耐受性。该合作项目将使用多学科方法,通过比较绿色组织和种子的动态响应来识别共同和特定的分子过程。该项目的成果将有助于设计分子育种方案,以提高作物对气候变化的适应能力。对大多数植物来说,过度失水是致命的,但少数物种,被称为复活植物,进化出了在几乎完全干燥的情况下生存的非凡能力。这种能力,称为脱水耐受性(DT),依赖于生理,生化和分子反应的组合,使植物在干燥状态下保持细胞完整性。有趣的是,所有的基因家族参与营养脱水耐受性(VDT)是存在于干燥敏感的植物,这表明这种特性的演变主要是通过调节网络的变化协调DT基因的表达,而不是从收购新的基因。由于缺乏精确的比较分析,阻碍了对控制VDT的调节因子的鉴定以及对维管植物中这一性状的进化起源的研究。因此,这个合作项目将确定控制VDT的调控网络,并通过使用综合方法分析关键复活谱系的DT反应来推断其在维管植物进化过程中的起源。具体目标包括(1)确定DT过程中营养和生殖组织中整体转录变化的动力学,(2)对DT过程中营养和生殖组织中整体代谢变化进行动力学分析,(3)对脱水和恢复过程中营养组织的转录和代谢组学变化进行原位和单细胞型动力学分析,(4)对复活植物中控制DT的调控网络进行比较分析。这项研究将确定激活VDT所需的遗传代谢网络,为未来增强耐旱性的作物育种提供基础。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Cushman其他文献

DMS法によるアイスプラントCAM関連遺伝子の発現制御領域の同定
DMS法鉴定冰植物CAM相关基因的表达控制区
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    近藤侑梨;佐藤稜真;竹内敬香;John Cushman;齋藤和幸;東江 栄
  • 通讯作者:
    東江 栄
MIT Open Access Articles The Microbial Opsin Family of Optogenetic Tools
麻省理工学院开放获取文章光遗传学工具的微生物视蛋白家族
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Feng Zhang;J. Vierock;O. Yizhar;L. Fenno;Satoshi Tsunoda;A. Kianianmomeni;Matthias Prigge;Andre Berndt;John Cushman;Ju¨rgen Polle;Jon Magnuson;Peter Hegemann;Karl Deisseroth
  • 通讯作者:
    Karl Deisseroth
トランスクリプトーム解析によるアイスプラントのCAM型光合成駆動を制御する遺伝子群の探索
通过转录组分析寻找控制冰植物CAM型光合作用驱动的基因
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    佐藤稜真;竹内敬香;近藤侑梨;John Cushman;齋藤和幸;東江 栄
  • 通讯作者:
    東江 栄

John Cushman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Cushman', 18)}}的其他基金

PlantSynBio: Optimized CAM Engineering for Improving Water-use Efficiency in Plants
PlantSynBio:优化 CAM 工程,提高植物用水效率
  • 批准号:
    2042253
  • 财政年份:
    2021
  • 资助金额:
    $ 28.7万
  • 项目类别:
    Standard Grant
Data-Driven Multiscale Model Identification and Scaling via Random Renormalization Group Operators for Subsurface Transport
通过随机重整化群算子进行数据驱动的多尺度模型识别和缩放用于地下传输
  • 批准号:
    1314828
  • 财政年份:
    2013
  • 资助金额:
    $ 28.7万
  • 项目类别:
    Standard Grant
Regulatory and Signaling Mechanisms of Crassulacean Acid Metabolism: A Photosynthetic Adaptation to Environmental Stress
景天酸代谢的调节和信号机制:对环境胁迫的光合适应
  • 批准号:
    0843730
  • 财政年份:
    2009
  • 资助金额:
    $ 28.7万
  • 项目类别:
    Standard Grant
The Hydrology of Desiccation and Cracking with Application to Desertification
干裂水文及其在荒漠化中的应用
  • 批准号:
    0838224
  • 财政年份:
    2009
  • 资助金额:
    $ 28.7万
  • 项目类别:
    Continuing Grant
2008 Gordon Research Conference on SALT & WATER STRESS IN PLANTS, September 7-12, 2008 Big Sky, MT
2008年戈登SALT研究会议
  • 批准号:
    0817753
  • 财政年份:
    2008
  • 资助金额:
    $ 28.7万
  • 项目类别:
    Standard Grant
Collaborative Research: CMG--Toward Understanding the Transfer of Genetic Information in Subsurface Hydrology
合作研究:CMG——了解地下水文学中遗传信息的传递
  • 批准号:
    0620460
  • 财政年份:
    2006
  • 资助金额:
    $ 28.7万
  • 项目类别:
    Standard Grant
Mechanisms of the Evolutionary Origins of Crassulacean Acid Metabolism (CAM) in Tropical Orchids
热带兰花景天酸代谢(CAM)的进化起源机制
  • 批准号:
    0543659
  • 财政年份:
    2006
  • 资助金额:
    $ 28.7万
  • 项目类别:
    Continuing Grant
Collaborative Research: CMG: Toward Understanding the Transfer of Genetic Information in Subsurface Hydrology
合作研究:CMG:了解地下水文学中遗传信息的传递
  • 批准号:
    0417555
  • 财政年份:
    2004
  • 资助金额:
    $ 28.7万
  • 项目类别:
    Standard Grant
CMG Training: Summer School in Geophysical Porous Media: Multidisciplinary Science from Nanoscale (Clay) to Global (Magma) Migration
CMG 培训:地球物理多孔介质暑期学校:从纳米尺度(粘土)到全球(岩浆)迁移的多学科科学
  • 批准号:
    0417805
  • 财政年份:
    2004
  • 资助金额:
    $ 28.7万
  • 项目类别:
    Standard Grant
Coupling Stochastic and Chaotic-Dynamic Theories with 3d-pptv Experiments to Study Flow and Anomalous Dispersion in Porous Media
将随机和混沌动力学理论与 3d-pptv 实验耦合来研究多孔介质中的流动和反常色散
  • 批准号:
    0310029
  • 财政年份:
    2003
  • 资助金额:
    $ 28.7万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348998
  • 财政年份:
    2025
  • 资助金额:
    $ 28.7万
  • 项目类别:
    Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348999
  • 财政年份:
    2025
  • 资助金额:
    $ 28.7万
  • 项目类别:
    Standard Grant
Collaborative Research: Investigating Southern Ocean Sea Surface Temperatures and Freshening during the Late Pliocene and Pleistocene along the Antarctic Margin
合作研究:调查上新世晚期和更新世沿南极边缘的南大洋海面温度和新鲜度
  • 批准号:
    2313120
  • 财政年份:
    2024
  • 资助金额:
    $ 28.7万
  • 项目类别:
    Standard Grant
Collaborative Research: NSFDEB-NERC: Warming's silver lining? Thermal compensation at multiple levels of organization may promote stream ecosystem stability in response to drought
合作研究:NSFDEB-NERC:变暖的一线希望?
  • 批准号:
    2312706
  • 财政年份:
    2024
  • 资助金额:
    $ 28.7万
  • 项目类别:
    Standard Grant
Collaborative Research: Chain Transform Fault: Understanding the dynamic behavior of a slow-slipping oceanic transform system
合作研究:链变换断层:了解慢滑海洋变换系统的动态行为
  • 批准号:
    2318855
  • 财政年份:
    2024
  • 资助金额:
    $ 28.7万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding Environmental and Ecological Controls on Carbon Export and Flux Attenuation near Bermuda
合作研究:了解百慕大附近碳输出和通量衰减的环境和生态控制
  • 批准号:
    2318940
  • 财政年份:
    2024
  • 资助金额:
    $ 28.7万
  • 项目类别:
    Standard Grant
Collaborative Research: Deciphering the mechanisms of marine nitrous oxide cycling using stable isotopes, molecular markers and in situ rates
合作研究:利用稳定同位素、分子标记和原位速率破译海洋一氧化二氮循环机制
  • 批准号:
    2319097
  • 财政年份:
    2024
  • 资助金额:
    $ 28.7万
  • 项目类别:
    Standard Grant
Collaborative Research: URoL:ASC: Determining the relationship between genes and ecosystem processes to improve biogeochemical models for nutrient management
合作研究:URoL:ASC:确定基因与生态系统过程之间的关系,以改进营养管理的生物地球化学模型
  • 批准号:
    2319123
  • 财政年份:
    2024
  • 资助金额:
    $ 28.7万
  • 项目类别:
    Standard Grant
Collaborative Research: Subduction Megathrust Rheology: The Combined Roles of On- and Off-Fault Processes in Controlling Fault Slip Behavior
合作研究:俯冲巨型逆断层流变学:断层上和断层外过程在控制断层滑动行为中的综合作用
  • 批准号:
    2319848
  • 财政年份:
    2024
  • 资助金额:
    $ 28.7万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberTraining: Pilot: PowerCyber: Computational Training for Power Engineering Researchers
协作研究:Cyber​​Training:试点:PowerCyber​​:电力工程研究人员的计算培训
  • 批准号:
    2319895
  • 财政年份:
    2024
  • 资助金额:
    $ 28.7万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了