PlantSynBio: Optimized CAM Engineering for Improving Water-use Efficiency in Plants

PlantSynBio:优化 CAM 工程,提高植物用水效率

基本信息

项目摘要

Crassulacean acid metabolism and tissue succulence are metabolic and anatomical adaptations that improve water-use efficiency and drought (and salinity) stress tolerance in plants. These traits are among the most widespread and successful adaptations in the plant kingdom for mitigating drought stress, and thus, represent highly useful traits for the design of climate-resilient crops. The goal of this project is to test optimized synthetic versions of crassulacean acid metabolism alone and in combination with engineered tissue succulence. The proposed synthetic gene circuits developed by this project can be applied widely to other food, feed, fiber, and biofuel crops to improve their productivity, improve water-use efficiency, and drought/salinity stress tolerance under the hotter and drier environments of the future. The project will also provide training of an increasingly diverse scientific workforce through student recruitment efforts that target students from historically underrepresented groups in science, technology, engineering, and mathematics. In addition, the project will provide training and preparedness of future scientists in evidence-based, visually focused, scientific communication through unique training opportunities for undergraduate and graduate students, and postdoctoral scholars in plant biochemistry, synthetic biology, and biotechnology blended with infographics, interactive visualizations, and visual social media. The investigators will increase public awareness of the need for more climate-resilient crops through the production of two high-quality videos describing the project deliverables to showcase the societal benefit of these biotechnological innovations. Lastly, the training and outreach activities will be evaluated through robust assessment activities to appraise their impact on public science outreach.Future increases in drought severity and duration will significantly slow the rate of crop productivity increases needed to satisfy future projected crop demands and threaten global food security. Therefore, innovative synthetic biology approaches for curtailing photorespiration and improving water-use efficiency via the introduction of synthetic crassulacean acid metabolism into C3 photosynthesis crops are essential. The proposed research will generate optimized synthetic carboxylation, decarboxylation, starch degradation, and complete crassulacean acid metabolism gene circuits. The resulting plants will be evaluated for improved growth, productivity, water-use efficiency, and water-deficit and salinity tolerance. In addition, plants expressing optimized crassulacean acid metabolism gene circuits will be evaluated with and without engineered tissue succulence in Arabidopsis and soybean, a critically important C3 photosynthesis crop for the U.S.. Empirical testing will be accompanied by detailed, genome-scale transcriptomic and metabolome profiling and diel flux balance analysis modeling to corroborate energetic efficiency predictions for each iteration of the synthetic crassulacean acid metabolism gene circuits. The broader impacts of the project include improving national food, feed, fiber, and biofuel security by enhancing crop productivity, water-use efficiency, and drought/salinity tolerance in a changing environment. Outreach and training goals include ensuring the training of an increasingly diverse scientific workforce through recruitment of underrepresented students, providing training and preparedness of future scientists in scientific communication, increasing public awareness of the need to improve the climate-resiliency of crops using videos describing the concepts of synthetic CAM and engineered tissue succulence, and assessing training, outreach and engagement activities for didactic and societal impacts.This award was co-funded by the Plant Genome Research Program and the Physiological Mechanisms and Biomechanics Program in the Division of Integrative Organismal Systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
天竺葵酸代谢和组织多肉化是一种代谢和解剖学上的适应,可以提高植物的水分利用效率和抗旱(和盐)胁迫能力。这些性状是植物王国中最广泛和最成功的缓解干旱胁迫的适应性性状,因此,它们代表了设计气候适应型作物的非常有用的性状。这个项目的目标是测试优化的合成版本的天冬肽酸代谢单独和结合工程组织多肉。该项目开发的合成基因电路可以广泛应用于其他粮食、饲料、纤维和生物燃料作物,以提高其生产力,提高水分利用效率,并在未来更炎热和更干燥的环境下耐干旱/盐胁迫。该项目还将通过招生工作,针对科学、技术、工程和数学领域历来代表性不足的群体的学生,为日益多样化的科学劳动力提供培训。此外,该项目将通过独特的培训机会,为植物生物化学、合成生物学和生物技术领域的本科生、研究生和博士后学者提供以证据为基础、以视觉为重点的科学传播方面的培训和准备,并将信息图表、交互式可视化和视觉社交媒体相结合。研究人员将通过制作两个高质量的视频来描述项目成果,以展示这些生物技术创新的社会效益,从而提高公众对需要更多适应气候变化的作物的认识。最后,将通过强有力的评估活动对培训和推广活动进行评估,以评估其对公共科学推广的影响。未来干旱的严重程度和持续时间的增加将大大减缓满足未来预计作物需求所需的作物生产力提高速度,并威胁到全球粮食安全。因此,通过在C3光合作用作物中引入合成天冬氨酸代谢来减少光呼吸和提高水利用效率的创新合成生物学方法是必不可少的。该研究将生成优化的合成羧基化、脱羧化、淀粉降解和完整的天冬氨酸代谢基因回路。将对获得的植株进行生长、生产力、水分利用效率、缺水和耐盐性的评价。此外,在拟南芥和大豆(美国重要的C3光合作用作物)中,表达优化的天冬氨酸代谢基因回路的植物将在有和没有工程化组织多汁的情况下进行评估。实证测试将伴随着详细的基因组级转录组和代谢组分析以及每日通量平衡分析建模,以证实合成的天冬酰胺酸代谢基因回路的每次迭代的能量效率预测。该项目的更广泛影响包括通过提高作物生产力、水利用效率和在不断变化的环境中耐旱/耐盐能力,改善国家粮食、饲料、纤维和生物燃料安全。推广和培训目标包括:通过招募代表性不足的学生,确保培养一支日益多样化的科学队伍;在科学传播方面为未来的科学家提供培训和准备;利用描述合成CAM和工程组织多肉质概念的视频,提高公众对提高作物气候适应能力必要性的认识;为教学和社会影响开展外联和参与活动。该奖项由植物基因组研究计划和综合有机体系统部门的生理机制和生物力学计划共同资助。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Cushman其他文献

DMS法によるアイスプラントCAM関連遺伝子の発現制御領域の同定
DMS法鉴定冰植物CAM相关基因的表达控制区
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    近藤侑梨;佐藤稜真;竹内敬香;John Cushman;齋藤和幸;東江 栄
  • 通讯作者:
    東江 栄
MIT Open Access Articles The Microbial Opsin Family of Optogenetic Tools
麻省理工学院开放获取文章光遗传学工具的微生物视蛋白家族
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Feng Zhang;J. Vierock;O. Yizhar;L. Fenno;Satoshi Tsunoda;A. Kianianmomeni;Matthias Prigge;Andre Berndt;John Cushman;Ju¨rgen Polle;Jon Magnuson;Peter Hegemann;Karl Deisseroth
  • 通讯作者:
    Karl Deisseroth
トランスクリプトーム解析によるアイスプラントのCAM型光合成駆動を制御する遺伝子群の探索
通过转录组分析寻找控制冰植物CAM型光合作用驱动的基因
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    佐藤稜真;竹内敬香;近藤侑梨;John Cushman;齋藤和幸;東江 栄
  • 通讯作者:
    東江 栄

John Cushman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Cushman', 18)}}的其他基金

Collaborative Research: RESEARCH-PGR: Unraveling the origin of vegetative desiccation tolerance in vascular plants
合作研究:RESEARCH-PGR:揭示维管植物营养干燥耐受性的起源
  • 批准号:
    2243692
  • 财政年份:
    2023
  • 资助金额:
    $ 155.79万
  • 项目类别:
    Standard Grant
Data-Driven Multiscale Model Identification and Scaling via Random Renormalization Group Operators for Subsurface Transport
通过随机重整化群算子进行数据驱动的多尺度模型识别和缩放用于地下传输
  • 批准号:
    1314828
  • 财政年份:
    2013
  • 资助金额:
    $ 155.79万
  • 项目类别:
    Standard Grant
Regulatory and Signaling Mechanisms of Crassulacean Acid Metabolism: A Photosynthetic Adaptation to Environmental Stress
景天酸代谢的调节和信号机制:对环境胁迫的光合适应
  • 批准号:
    0843730
  • 财政年份:
    2009
  • 资助金额:
    $ 155.79万
  • 项目类别:
    Standard Grant
The Hydrology of Desiccation and Cracking with Application to Desertification
干裂水文及其在荒漠化中的应用
  • 批准号:
    0838224
  • 财政年份:
    2009
  • 资助金额:
    $ 155.79万
  • 项目类别:
    Continuing Grant
2008 Gordon Research Conference on SALT & WATER STRESS IN PLANTS, September 7-12, 2008 Big Sky, MT
2008年戈登SALT研究会议
  • 批准号:
    0817753
  • 财政年份:
    2008
  • 资助金额:
    $ 155.79万
  • 项目类别:
    Standard Grant
Collaborative Research: CMG--Toward Understanding the Transfer of Genetic Information in Subsurface Hydrology
合作研究:CMG——了解地下水文学中遗传信息的传递
  • 批准号:
    0620460
  • 财政年份:
    2006
  • 资助金额:
    $ 155.79万
  • 项目类别:
    Standard Grant
Mechanisms of the Evolutionary Origins of Crassulacean Acid Metabolism (CAM) in Tropical Orchids
热带兰花景天酸代谢(CAM)的进化起源机制
  • 批准号:
    0543659
  • 财政年份:
    2006
  • 资助金额:
    $ 155.79万
  • 项目类别:
    Continuing Grant
Collaborative Research: CMG: Toward Understanding the Transfer of Genetic Information in Subsurface Hydrology
合作研究:CMG:了解地下水文学中遗传信息的传递
  • 批准号:
    0417555
  • 财政年份:
    2004
  • 资助金额:
    $ 155.79万
  • 项目类别:
    Standard Grant
CMG Training: Summer School in Geophysical Porous Media: Multidisciplinary Science from Nanoscale (Clay) to Global (Magma) Migration
CMG 培训:地球物理多孔介质暑期学校:从纳米尺度(粘土)到全球(岩浆)迁移的多学科科学
  • 批准号:
    0417805
  • 财政年份:
    2004
  • 资助金额:
    $ 155.79万
  • 项目类别:
    Standard Grant
Coupling Stochastic and Chaotic-Dynamic Theories with 3d-pptv Experiments to Study Flow and Anomalous Dispersion in Porous Media
将随机和混沌动力学理论与 3d-pptv 实验耦合来研究多孔介质中的流动和反常色散
  • 批准号:
    0310029
  • 财政年份:
    2003
  • 资助金额:
    $ 155.79万
  • 项目类别:
    Continuing Grant

相似国自然基金

Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目

相似海外基金

GreenTower AI: Hyper-Optimized and Self-Sustaining Cell Towers for a Net-Zero UK Telecom
GreenTower AI:英国电信零净值运营的超优化且自我维持的蜂窝塔
  • 批准号:
    10114180
  • 财政年份:
    2024
  • 资助金额:
    $ 155.79万
  • 项目类别:
    Collaborative R&D
SBIR Phase II: Thermally-optimized power amplifiers for next-generation telecommunication and radar
SBIR 第二阶段:用于下一代电信和雷达的热优化功率放大器
  • 批准号:
    2335504
  • 财政年份:
    2024
  • 资助金额:
    $ 155.79万
  • 项目类别:
    Cooperative Agreement
STTR Phase II: Optimized manufacturing and machine learning based automation of Endothelium-on-a-chip microfluidic devices for drug screening applications.
STTR 第二阶段:用于药物筛选应用的片上内皮微流体装置的优化制造和基于机器学习的自动化。
  • 批准号:
    2332121
  • 财政年份:
    2024
  • 资助金额:
    $ 155.79万
  • 项目类别:
    Cooperative Agreement
Structure-based identification of optimized mutant Kir3.4 inhibitors for renoprotection (C07 (A03 + A04))
基于结构的肾脏保护优化突变型 Kir3.4 抑制剂的鉴定 (C07 (A03 A04))
  • 批准号:
    516847250
  • 财政年份:
    2023
  • 资助金额:
    $ 155.79万
  • 项目类别:
    Collaborative Research Centres
Novel alkaline electrolyser with optimized micro-patterned electrodes for efficient ultra-low cost hydrogen
新型碱性电解槽具有优化的微图案电极,可实现高效、超低成本的氢气
  • 批准号:
    10075115
  • 财政年份:
    2023
  • 资助金额:
    $ 155.79万
  • 项目类别:
    Grant for R&D
Optimized Up-scaled Technology for Next Generation Solid Oxide Electrolysis
下一代固体氧化物电解的优化放大技术
  • 批准号:
    10063108
  • 财政年份:
    2023
  • 资助金额:
    $ 155.79万
  • 项目类别:
    EU-Funded
Cooperative and Interconnected Green delivery solutions towards an era of optimized zero emission last-mile Logistics
合作互联的绿色配送解决方案,迈向优化零排放最后一公里物流时代
  • 批准号:
    10063223
  • 财政年份:
    2023
  • 资助金额:
    $ 155.79万
  • 项目类别:
    EU-Funded
Cooperative and Interconnected Green delivery solutions towards an era of optimized zero emission last mile Logistics
合作互联的绿色配送解决方案,迈向优化零排放最后一公里物流时代
  • 批准号:
    10065303
  • 财政年份:
    2023
  • 资助金额:
    $ 155.79万
  • 项目类别:
    EU-Funded
'Smart Ventilation' - Novel Real-Time Biosensors and Artificial Intelligence for Optimized Mechanical Ventilation in Human Lungs
“智能通气”——新型实时生物传感器和人工智能,用于优化人肺机械通气
  • 批准号:
    489877
  • 财政年份:
    2023
  • 资助金额:
    $ 155.79万
  • 项目类别:
    Operating Grants
Development of individualized optimized neurorehabilitation to promote recovery of motor function after stroke
开发个体化优化神经康复以促进中风后运动功能的恢复
  • 批准号:
    23K10417
  • 财政年份:
    2023
  • 资助金额:
    $ 155.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了