PlantSynBio: Optimized CAM Engineering for Improving Water-use Efficiency in Plants
PlantSynBio:优化 CAM 工程,提高植物用水效率
基本信息
- 批准号:2042253
- 负责人:
- 金额:$ 155.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Crassulacean acid metabolism and tissue succulence are metabolic and anatomical adaptations that improve water-use efficiency and drought (and salinity) stress tolerance in plants. These traits are among the most widespread and successful adaptations in the plant kingdom for mitigating drought stress, and thus, represent highly useful traits for the design of climate-resilient crops. The goal of this project is to test optimized synthetic versions of crassulacean acid metabolism alone and in combination with engineered tissue succulence. The proposed synthetic gene circuits developed by this project can be applied widely to other food, feed, fiber, and biofuel crops to improve their productivity, improve water-use efficiency, and drought/salinity stress tolerance under the hotter and drier environments of the future. The project will also provide training of an increasingly diverse scientific workforce through student recruitment efforts that target students from historically underrepresented groups in science, technology, engineering, and mathematics. In addition, the project will provide training and preparedness of future scientists in evidence-based, visually focused, scientific communication through unique training opportunities for undergraduate and graduate students, and postdoctoral scholars in plant biochemistry, synthetic biology, and biotechnology blended with infographics, interactive visualizations, and visual social media. The investigators will increase public awareness of the need for more climate-resilient crops through the production of two high-quality videos describing the project deliverables to showcase the societal benefit of these biotechnological innovations. Lastly, the training and outreach activities will be evaluated through robust assessment activities to appraise their impact on public science outreach.Future increases in drought severity and duration will significantly slow the rate of crop productivity increases needed to satisfy future projected crop demands and threaten global food security. Therefore, innovative synthetic biology approaches for curtailing photorespiration and improving water-use efficiency via the introduction of synthetic crassulacean acid metabolism into C3 photosynthesis crops are essential. The proposed research will generate optimized synthetic carboxylation, decarboxylation, starch degradation, and complete crassulacean acid metabolism gene circuits. The resulting plants will be evaluated for improved growth, productivity, water-use efficiency, and water-deficit and salinity tolerance. In addition, plants expressing optimized crassulacean acid metabolism gene circuits will be evaluated with and without engineered tissue succulence in Arabidopsis and soybean, a critically important C3 photosynthesis crop for the U.S.. Empirical testing will be accompanied by detailed, genome-scale transcriptomic and metabolome profiling and diel flux balance analysis modeling to corroborate energetic efficiency predictions for each iteration of the synthetic crassulacean acid metabolism gene circuits. The broader impacts of the project include improving national food, feed, fiber, and biofuel security by enhancing crop productivity, water-use efficiency, and drought/salinity tolerance in a changing environment. Outreach and training goals include ensuring the training of an increasingly diverse scientific workforce through recruitment of underrepresented students, providing training and preparedness of future scientists in scientific communication, increasing public awareness of the need to improve the climate-resiliency of crops using videos describing the concepts of synthetic CAM and engineered tissue succulence, and assessing training, outreach and engagement activities for didactic and societal impacts.This award was co-funded by the Plant Genome Research Program and the Physiological Mechanisms and Biomechanics Program in the Division of Integrative Organismal Systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
景天酸代谢和组织肉质化是提高植物水分利用效率和干旱(和盐)胁迫耐受性的代谢和解剖适应。这些性状是植物界缓解干旱胁迫的最广泛和最成功的适应之一,因此代表了设计气候适应性作物的非常有用的性状。该项目的目标是测试优化的景天科酸代谢的合成版本单独和与工程组织多汁相结合。该项目开发的拟议合成基因电路可广泛应用于其他粮食、饲料、纤维和生物燃料作物,以提高其生产力,提高水分利用效率,以及在未来更热和更干燥的环境下的干旱/盐胁迫耐受性。该项目还将通过学生招聘工作,针对科学,技术,工程和数学领域历史上代表性不足的群体的学生,为日益多样化的科学劳动力提供培训。此外,该项目将通过为本科生和研究生提供独特的培训机会,为未来的科学家提供基于证据,视觉聚焦的科学传播培训和准备,以及植物生物化学,合成生物学和生物技术的博士后学者,与信息图表,交互式可视化和视觉社交媒体相结合。研究人员将通过制作两个高质量的视频来提高公众对气候适应性更强的作物的需求的认识,这些视频描述了项目的可交付成果,以展示这些生物技术创新的社会效益。最后,将通过强有力的评估活动来评估培训和外联活动,以评估其对公共科学外联的影响。未来干旱的严重程度和持续时间的增加将大大减缓满足未来预测作物需求所需的作物产量增长速度,并威胁全球粮食安全。因此,通过将合成景天科酸代谢引入C3光合作用作物来减少光呼吸和提高水利用效率的创新合成生物学方法是必不可少的。该研究将产生优化的合成羧化、脱羧、淀粉降解和完整的景天科酸代谢基因电路。将评估由此产生的植物的生长、生产力、水利用效率、缺水和耐盐性。此外,表达优化的景天科酸代谢基因电路的植物将在拟南芥和大豆中进行评估,拟南芥和大豆是美国至关重要的C3光合作用作物。经验测试将伴随着详细的,基因组规模的转录组和代谢组分析和昼夜通量平衡分析建模,以证实能量效率预测的合成景天科酸代谢基因电路的每次迭代。该项目的更广泛影响包括通过在不断变化的环境中提高作物生产力、用水效率和耐旱/耐盐性,改善国家粮食、饲料、纤维和生物燃料安全。外联和培训目标包括通过招募代表性不足的学生,确保培训日益多样化的科学工作者,为未来的科学家提供科学传播方面的培训和准备,利用描述合成CAM和工程组织多汁概念的视频,提高公众对提高作物气候适应力必要性的认识,并评估培训,推广和参与活动的教学和社会影响。这个奖项是共同的-由植物基因组研究计划和综合有机体系统部的生理机制和生物力学计划资助。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Cushman其他文献
DMS法によるアイスプラントCAM関連遺伝子の発現制御領域の同定
DMS法鉴定冰植物CAM相关基因的表达控制区
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
近藤侑梨;佐藤稜真;竹内敬香;John Cushman;齋藤和幸;東江 栄 - 通讯作者:
東江 栄
MIT Open Access Articles The Microbial Opsin Family of Optogenetic Tools
麻省理工学院开放获取文章光遗传学工具的微生物视蛋白家族
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Feng Zhang;J. Vierock;O. Yizhar;L. Fenno;Satoshi Tsunoda;A. Kianianmomeni;Matthias Prigge;Andre Berndt;John Cushman;Ju¨rgen Polle;Jon Magnuson;Peter Hegemann;Karl Deisseroth - 通讯作者:
Karl Deisseroth
トランスクリプトーム解析によるアイスプラントのCAM型光合成駆動を制御する遺伝子群の探索
通过转录组分析寻找控制冰植物CAM型光合作用驱动的基因
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
佐藤稜真;竹内敬香;近藤侑梨;John Cushman;齋藤和幸;東江 栄 - 通讯作者:
東江 栄
John Cushman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Cushman', 18)}}的其他基金
Collaborative Research: RESEARCH-PGR: Unraveling the origin of vegetative desiccation tolerance in vascular plants
合作研究:RESEARCH-PGR:揭示维管植物营养干燥耐受性的起源
- 批准号:
2243692 - 财政年份:2023
- 资助金额:
$ 155.79万 - 项目类别:
Standard Grant
Data-Driven Multiscale Model Identification and Scaling via Random Renormalization Group Operators for Subsurface Transport
通过随机重整化群算子进行数据驱动的多尺度模型识别和缩放用于地下传输
- 批准号:
1314828 - 财政年份:2013
- 资助金额:
$ 155.79万 - 项目类别:
Standard Grant
Regulatory and Signaling Mechanisms of Crassulacean Acid Metabolism: A Photosynthetic Adaptation to Environmental Stress
景天酸代谢的调节和信号机制:对环境胁迫的光合适应
- 批准号:
0843730 - 财政年份:2009
- 资助金额:
$ 155.79万 - 项目类别:
Standard Grant
The Hydrology of Desiccation and Cracking with Application to Desertification
干裂水文及其在荒漠化中的应用
- 批准号:
0838224 - 财政年份:2009
- 资助金额:
$ 155.79万 - 项目类别:
Continuing Grant
2008 Gordon Research Conference on SALT & WATER STRESS IN PLANTS, September 7-12, 2008 Big Sky, MT
2008年戈登SALT研究会议
- 批准号:
0817753 - 财政年份:2008
- 资助金额:
$ 155.79万 - 项目类别:
Standard Grant
Collaborative Research: CMG--Toward Understanding the Transfer of Genetic Information in Subsurface Hydrology
合作研究:CMG——了解地下水文学中遗传信息的传递
- 批准号:
0620460 - 财政年份:2006
- 资助金额:
$ 155.79万 - 项目类别:
Standard Grant
Mechanisms of the Evolutionary Origins of Crassulacean Acid Metabolism (CAM) in Tropical Orchids
热带兰花景天酸代谢(CAM)的进化起源机制
- 批准号:
0543659 - 财政年份:2006
- 资助金额:
$ 155.79万 - 项目类别:
Continuing Grant
Collaborative Research: CMG: Toward Understanding the Transfer of Genetic Information in Subsurface Hydrology
合作研究:CMG:了解地下水文学中遗传信息的传递
- 批准号:
0417555 - 财政年份:2004
- 资助金额:
$ 155.79万 - 项目类别:
Standard Grant
CMG Training: Summer School in Geophysical Porous Media: Multidisciplinary Science from Nanoscale (Clay) to Global (Magma) Migration
CMG 培训:地球物理多孔介质暑期学校:从纳米尺度(粘土)到全球(岩浆)迁移的多学科科学
- 批准号:
0417805 - 财政年份:2004
- 资助金额:
$ 155.79万 - 项目类别:
Standard Grant
Coupling Stochastic and Chaotic-Dynamic Theories with 3d-pptv Experiments to Study Flow and Anomalous Dispersion in Porous Media
将随机和混沌动力学理论与 3d-pptv 实验耦合来研究多孔介质中的流动和反常色散
- 批准号:
0310029 - 财政年份:2003
- 资助金额:
$ 155.79万 - 项目类别:
Continuing Grant
相似国自然基金
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
相似海外基金
SBIR Phase II: Thermally-optimized power amplifiers for next-generation telecommunication and radar
SBIR 第二阶段:用于下一代电信和雷达的热优化功率放大器
- 批准号:
2335504 - 财政年份:2024
- 资助金额:
$ 155.79万 - 项目类别:
Cooperative Agreement
GreenTower AI: Hyper-Optimized and Self-Sustaining Cell Towers for a Net-Zero UK Telecom
GreenTower AI:英国电信零净值运营的超优化且自我维持的蜂窝塔
- 批准号:
10114180 - 财政年份:2024
- 资助金额:
$ 155.79万 - 项目类别:
Collaborative R&D
STTR Phase II: Optimized manufacturing and machine learning based automation of Endothelium-on-a-chip microfluidic devices for drug screening applications.
STTR 第二阶段:用于药物筛选应用的片上内皮微流体装置的优化制造和基于机器学习的自动化。
- 批准号:
2332121 - 财政年份:2024
- 资助金额:
$ 155.79万 - 项目类别:
Cooperative Agreement
Collaborative Research: Optimized frequency-domain analysis for astronomical time series
合作研究:天文时间序列的优化频域分析
- 批准号:
2307979 - 财政年份:2023
- 资助金额:
$ 155.79万 - 项目类别:
Standard Grant
CRII: SHF: A Flexible, Learning-Enabled, and Multi-layer Interconnection Architecture for Optimized On-Chip Communications
CRII:SHF:一种灵活的、支持学习的多层互连架构,用于优化片上通信
- 批准号:
2245950 - 财政年份:2023
- 资助金额:
$ 155.79万 - 项目类别:
Standard Grant
Development of individualized optimized neurorehabilitation to promote recovery of motor function after stroke
开发个体化优化神经康复以促进中风后运动功能的恢复
- 批准号:
23K10417 - 财政年份:2023
- 资助金额:
$ 155.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Self-optimized graph database management system with deep learning
具有深度学习的自优化图数据库管理系统
- 批准号:
23H03406 - 财政年份:2023
- 资助金额:
$ 155.79万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
'Smart Ventilation' - Novel Real-Time Biosensors and Artificial Intelligence for Optimized Mechanical Ventilation in Human Lungs
“智能通气”——新型实时生物传感器和人工智能,用于优化人肺机械通气
- 批准号:
489877 - 财政年份:2023
- 资助金额:
$ 155.79万 - 项目类别:
Operating Grants
Structure-based identification of optimized mutant Kir3.4 inhibitors for renoprotection (C07 (A03 + A04))
基于结构的肾脏保护优化突变型 Kir3.4 抑制剂的鉴定 (C07 (A03 A04))
- 批准号:
516847250 - 财政年份:2023
- 资助金额:
$ 155.79万 - 项目类别:
Collaborative Research Centres
Understanding targeted protein degradation for design of optimized therapeutic strategies
了解靶向蛋白质降解以设计优化的治疗策略
- 批准号:
BB/X007499/1 - 财政年份:2023
- 资助金额:
$ 155.79万 - 项目类别:
Research Grant














{{item.name}}会员




