NRT AI: Artificial intelligence for Changing Climate and Environmental SuStainability (ACCESS)
NRT AI:人工智能促进气候变化和环境可持续性(ACCESS)
基本信息
- 批准号:2244396
- 负责人:
- 金额:$ 299.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-15 至 2028-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
AbstractClimate change is a pressing issue with major implications for societal well-being, particularly for disadvantaged communities. Climate-related extreme events such as hurricanes, flooding, drought, heatwaves, wildfires are escalating around the world. Machine-learning (ML) based Artificial-Intelligence (AI) approaches have shown great promise in reducing and responding to changing climate. However, climate change research is fractionated in diverse disciplines (computer science, data science, AI, geosciences, environmental science, and engineering). This delays the progress towards a better understanding of the impacts of climate change and ML/AI solutions. This National Science Foundation Research Traineeship award to the Morgan State University will provide substantive, hands-on research experience for students from underrepresented minority populations who can tackle grand environmental challenges using interdisciplinary methods. The traineeship will prepare 50 PhD students including 25 funded trainees from diverse fields (bio-environmental science, computer science, civil engineering, mathematics, electrical and computer engineering) with technical, dynamic interdisciplinary and professional skills to responsibly solve grand climate change challenges.The traineeship program places a strong emphasis on a convergence research approach to climate change, which is a pressing 21st century challenge. Major research efforts will focus on three areas: a) AI for water reuse; b) emerging contaminants and ML/AI prediction; and c) disease ecology, climate change and AI. The program consists of an interdisciplinary team of environmental chemists, environmental scientists, computer scientists, engineers to focus on research, educational, and career development activities. Over a five-year period, the career and scientific activities will include: a) mentored research thesis; b) advanced experimental courses; c) a series of professional workshops on leadership, scientific ethic, and science communication skills; d) domestic internship opportunities; e) summer workshops on changing climate and solutions; and f) international research internships. Trainees will work in teams to solve real-world environmental challenges, and a seminar with invited distinguished speakers and professional development activities will all help to foster a friendly and collaborative inclusive positive learning environment. The outcome will be a cohort of students from groups historically underrepresented in STEM fields with a strong multidisciplinary background and understanding of how AI can provide solutions for changing climate, environmental pollution, and water quality management. The goal is to provide a rewarding opportunity for all trainees to conduct novel, hands-on citizen science research at Morgan State under the guidance of diverse faculty and postdocs. A second major goal is to increase the participation of students from minority groups and stimulate their interest to pursue future careers in the STEM fields.The NSF Research Traineeship (NRT) Program is designed to encourage the development and implementation of bold, new potentially transformative models for STEM graduate education training. The program is dedicated to effective training of STEM graduate students in high priority interdisciplinary or convergent research areas through comprehensive traineeship models that are innovative, evidence-based, and aligned with changing workforce and research needs. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
摘要气候变化是一个紧迫的问题,对社会福祉产生重大影响,特别是对弱势社区而言。飓风、洪水、干旱、热浪、野火等与气候有关的极端事件正在世界各地不断升级。基于机器学习 (ML) 的人工智能 (AI) 方法在减少和应对气候变化方面显示出了巨大的前景。然而,气候变化研究分散在不同的学科(计算机科学、数据科学、人工智能、地球科学、环境科学和工程学)。这延迟了更好地了解气候变化和机器学习/人工智能解决方案的影响的进展。摩根州立大学获得的国家科学基金会研究实习奖将为来自少数群体的学生提供实质性的实践研究经验,他们可以利用跨学科方法应对重大的环境挑战。该培训计划将培养 50 名博士生,其中包括 25 名来自不同领域(生物环境科学、计算机科学、土木工程、数学、电气和计算机工程)的受资助学员,他们拥有技术、动态跨学科和专业技能,以负责任地解决气候变化的重大挑战。培训计划高度重视气候变化的融合研究方法,这是 21 世纪的一项紧迫挑战。主要研究工作将集中在三个领域:a)人工智能用于水再利用; b) 新出现的污染物和机器学习/人工智能预测; c) 疾病生态学、气候变化和人工智能。该计划由环境化学家、环境科学家、计算机科学家、工程师组成的跨学科团队组成,专注于研究、教育和职业发展活动。在五年期间,职业和科学活动将包括: a) 指导研究论文; b) 高级实验课程; c) 一系列关于领导力、科学道德和科学传播技巧的专业研讨会; d) 国内实习机会; e) 关于气候变化和解决方案的夏季研讨会; f) 国际研究实习。学员将通过团队合作解决现实世界的环境挑战,邀请杰出演讲者参加的研讨会和专业发展活动都将有助于营造一个友好、协作、包容的积极学习环境。其结果将是一群来自历史上在 STEM 领域代表性不足的群体的学生,他们具有强大的多学科背景,并且了解人工智能如何为气候变化、环境污染和水质管理提供解决方案。目标是为所有学员提供一个有益的机会,让他们在摩根州立大学不同教员和博士后的指导下进行新颖的、实践性的公民科学研究。第二个主要目标是增加少数族裔学生的参与度,激发他们在 STEM 领域追求未来职业的兴趣。 NSF 研究实习 (NRT) 计划旨在鼓励为 STEM 研究生教育培训开发和实施大胆的、具有潜在变革性的新模式。该计划致力于通过创新、循证且符合不断变化的劳动力和研究需求的综合培训模式,对高度优先的跨学科或融合研究领域的 STEM 研究生进行有效培训。 该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Samendra Sherchan其他文献
Reduction of crAssphage and enteric viruses during conventional wastewater treatment
传统废水处理过程中减少噬菌体和肠道病毒
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Samendra Sherchan;Sarmila Tandukar;Eiji Haramoto - 通讯作者:
Eiji Haramoto
Evaluation of physical, chemical and microbiological parameters of water quality in the Harris Neck estuarine marshes along the Georgia coast
- DOI:
10.1016/j.marpolbul.2010.11.010 - 发表时间:
2011-01-01 - 期刊:
- 影响因子:
- 作者:
Shanu Markand;Dave S. Bachoon;Lisa Gentit;Samendra Sherchan;Keith Gates - 通讯作者:
Keith Gates
Samendra Sherchan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Samendra Sherchan', 18)}}的其他基金
IRES Track I: United States-Nepal Collaborative Research for Climate, Water and Environmental Biotechnology (CWEB)
IRES 第一轨:美国-尼泊尔气候、水和环境生物技术合作研究 (CWEB)
- 批准号:
2246364 - 财政年份:2023
- 资助金额:
$ 299.52万 - 项目类别:
Standard Grant
RAPID: Impact of extreme flooding on groundwater quality following Hurricane Ida
RAPID:飓风艾达后极端洪水对地下水质量的影响
- 批准号:
2219078 - 财政年份:2022
- 资助金额:
$ 299.52万 - 项目类别:
Standard Grant
RAPID: Impact of extreme flooding on groundwater quality following Hurricane Ida
RAPID:飓风艾达后极端洪水对地下水质量的影响
- 批准号:
2152491 - 财政年份:2021
- 资助金额:
$ 299.52万 - 项目类别:
Standard Grant
相似国自然基金
联邦学习驱动下成渝地区职业教育AI产教协同的跨区域数据共享机制与培养方案优化要素机理研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
AI驱动药物研发的技术发展趋势及重庆技术创新路径选择战略研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
AI赋能职业教育:“智慧职教”平台教学视频核心知识抽取研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于AI 技术的高校网络舆情监测与治理路径研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
患者安全视角下医疗AI技术对医务人员风险感知的双刃剑机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于可穿戴设备与AI动态优化的阿尔茨海默病早期生活方式干预系统研发及效应研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
成渝交通一体化背景下的高速公路智慧管控系统:大数据驱动、AI预警与数智决策
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于AI的光谱-色度耦合动态调控系统技术研究及其在城乡建筑光环境优化中的应用
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
多模态下AI技术融合在教育创新中的应用与关键技术研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于职业教育和产学研协同的低成本专用大模型AI系统研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
I-Corps: Centralized, Cloud-Based, Artificial Intelligence (AI) Video Analysis for Enhanced Intubation Documentation and Continuous Quality Control
I-Corps:基于云的集中式人工智能 (AI) 视频分析,用于增强插管记录和持续质量控制
- 批准号:
2405662 - 财政年份:2024
- 资助金额:
$ 299.52万 - 项目类别:
Standard Grant
SBIR Phase I: A web portal for artificial intelligence (AI)-based comprehensive discovery of repositioning drugs
SBIR 第一阶段:基于人工智能 (AI) 的重新定位药物综合发现门户网站
- 批准号:
2334510 - 财政年份:2024
- 资助金额:
$ 299.52万 - 项目类别:
Standard Grant
I-Corps: Translation potential of using artificial intelligence (AI) for an interactive and inclusive language-learning process designed for young children
I-Corps:使用人工智能 (AI) 为幼儿设计的交互式和包容性语言学习过程的翻译潜力
- 批准号:
2418277 - 财政年份:2024
- 资助金额:
$ 299.52万 - 项目类别:
Standard Grant
I-Corps: Translation potential of an Artificial Intelligence (AI) approach to quantify and diagnose spinal cord diseases
I-Corps:人工智能 (AI) 方法量化和诊断脊髓疾病的转化潜力
- 批准号:
2416075 - 财政年份:2024
- 资助金额:
$ 299.52万 - 项目类别:
Standard Grant
CAREER: An Artificial Intelligence (AI)-enabled Analytics Perspective for Developing Proactive Cyber Threat Intelligence
职业:基于人工智能 (AI) 的分析视角,用于开发主动网络威胁情报
- 批准号:
2338479 - 财政年份:2024
- 资助金额:
$ 299.52万 - 项目类别:
Continuing Grant
Magnetic Resonance Imaging (MRI) and Artificial Intelligence (AI) can improve preoperative malignancy risk prediction of ovarian masses.
磁共振成像(MRI)和人工智能(AI)可以改善卵巢肿块的术前恶性肿瘤风险预测。
- 批准号:
486885 - 财政年份:2023
- 资助金额:
$ 299.52万 - 项目类别:
Operating Grants
What does Artificial Intelligence Mean for the Future of Democratic Society? Examining the societal impact of AI and whether human rights can respond
人工智能对民主社会的未来意味着什么?
- 批准号:
MR/T042133/2 - 财政年份:2023
- 资助金额:
$ 299.52万 - 项目类别:
Fellowship
I-Corps: Contextualization of Explainable Artificial Intelligence (AI) for Better Health
I-Corps:可解释人工智能 (AI) 的情境化以改善健康
- 批准号:
2331366 - 财政年份:2023
- 资助金额:
$ 299.52万 - 项目类别:
Standard Grant
SBIR Phase I: Development of novel artificial intelligence (AI)-enabled, non-invasive, heart attack diagnostics
SBIR 第一阶段:开发新型人工智能 (AI) 支持的非侵入性心脏病诊断
- 批准号:
2208248 - 财政年份:2023
- 资助金额:
$ 299.52万 - 项目类别:
Standard Grant
SBIR Phase I: Artificial Intelligence (AI)-enabled Personalized Employability Curriculum (APEC)
SBIR 第一阶段:人工智能 (AI) 支持的个性化就业能力课程 (APEC)
- 批准号:
2230864 - 财政年份:2023
- 资助金额:
$ 299.52万 - 项目类别:
Standard Grant














{{item.name}}会员




