Collaborative Research: Net-Shape and Scalable Additive Manufacturing for Thermoelectric Waste Heat Recovery Materials and Devices using Selective Laser Melting

合作研究:使用选择性激光熔化进行热电废热回收材料和设备的净形状和可扩展增材制造

基本信息

  • 批准号:
    2244686
  • 负责人:
  • 金额:
    $ 25.57万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-15 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

Over 55 percent of the energy consumed in the US is released as waste heat. For the manufacturing sector alone, the total unrecovered waste heat is estimated to be 2,500 trillion BTU per year. The waste heat from American automobiles is equivalent to losing over $50 billion each year. Among various waste heat recovery technologies, solid-state thermoelectric generators (TEGs) are a promising strategy to increase energy efficiency, alleviate air pollution, and reduce carbon emissions. Traditional TEG manufacturing includes material synthesis, module assembly, and device integration, which has low productivity and high cost. A widespread deployment of TEGs in existing energy systems can be achieved only by resolving following key challenges in TEG manufacturing: cost-effective synthesis of abundant, low cost, reliable, and high ZT (figure of merit) thermoelectric materials; scalable manufacturing of TEG devices; function graded realization in the temperature gradient environment. This project has an additive manufacturing (AM) based net-shape nanomanufacturing process, that takes the advantages of the latest advances in materials science, heat transfer, and manufacturing, to tackle these challenges. To accomplish this ambitious goal, an interdisciplinary team of energy harvesting, material scientist, heat transfer and manufacturing is assembled at Virginia Tech, Carnegie Mellon, and UW, in collaboration with an industry leader of AM. Students from diverse background will be trained for the twenty-first century workforce. Great efforts will also be made for outreaches to K12 students. The objective of this project is to develop a novel integrated nanomanufacturing process for high-performance thermoelectric materials and functional devices using the selective laser melting (SLM) based AM method. Furthermore, a correlation between the laser processing variables and thermoelectric material characteristics will be established to provide fundamental understanding of laser-material interactions to achieve a net-shape and scalable AM method for thermoelectric devices. Specifically, the following hypotheses will be tested: (1) The non-equilibrium conditions produced during the laser-based AM process can introduce numerous nano-defects, nanoscale particles, and abundant multi-scale grain boundaries, which can reduce the thermal conductivity dramatically by phonon scatterings. (2) doped Si or other nano-particles will be used as additive materials in the nanomanufacturing process to improve the mechanical properties, enhance the electrical conductivity, and increase the Seebeck coefficient. (3) The laser-based AM can readily realize the graded doping and variable cross-section areas along the length of the thermoelectric elements with temperate variance to make the best use of the temperature-dependent material properties for achieving high performance thermoelectric devices. (4) Using the laser-based AM, the direct manufacturing of thermoelectric materials, thermal insulation layers, electrical conductor layers, and heat exchangers as a functional and integrated energy harvesting system, can result in higher mechanical stability and thermal reliability as compared to the traditional manufacturing approaches. Characterized as low-cost, high-efficiency, and industry-scalable nanomanufacturing of clean energy systems, this technology, if successfully tested and validated, will become extremely attractive for many industries associated with energy and manufacturing systems, such as automobiles, power stations, steel plants and many more. Understanding the fundamentals of electron and phonon transport for thermoelectric materials, developing next generation manufacturing tools, and designing novel heat transfer systems will result in increased efficiency of the energy system and reduced of US dependency on foreign energy sources. The industrial partnership accelerates the assimilation of basic science research into industrial practice.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在美国,超过55%的能源消耗是以废热的形式释放的。仅就制造业而言,每年未回收的废热总量估计为2,500万亿BTU。美国汽车产生的废热相当于每年损失500多亿美元。在各种废热回收技术中,固态热电发电机(TEG)是一种很有前途的策略,可以提高能源效率,减轻空气污染,减少碳排放。传统的TEG制造包括材料合成、模块组装和器件集成,生产率低,成本高。TEG在现有能源系统中的广泛部署只能通过解决TEG制造中的以下关键挑战来实现:大量、低成本、可靠和高ZT(品质因数)热电材料的成本有效的合成; TEG设备的可扩展制造;温度梯度环境中的功能分级实现。该项目具有基于增材制造(AM)的净形纳米制造工艺,利用材料科学,传热和制造的最新进展来应对这些挑战。为了实现这一雄心勃勃的目标,弗吉尼亚理工大学、卡内基梅隆大学和华盛顿大学与AM行业领导者合作,组建了一个由能量收集、材料科学家、传热和制造业组成的跨学科团队。来自不同背景的学生将接受培训,成为21世纪世纪的劳动力。此外,我们亦会致力外展服务K12学生。本研究的目的是利用选择性激光熔化(SLM)的AM方法,开发一种新型的高性能热电材料和功能器件的集成纳米制造工艺。此外,将建立激光加工变量和热电材料特性之间的相关性,以提供对激光-材料相互作用的基本理解,从而实现用于热电器件的净形状和可扩展的AM方法。具体而言,将测试以下假设:(1)在基于激光的AM过程中产生的非平衡条件可以引入大量的纳米缺陷,纳米级颗粒和丰富的多尺度晶界,这可以通过声子散射显著降低热导率。(2)掺杂的Si或其它纳米颗粒将在纳米制造过程中用作添加材料,以改善机械性能,增强导电性,并增加塞贝克系数。(3)基于激光的AM可以容易地实现梯度掺杂和沿热电元件的长度沿着具有温度变化的可变横截面区域,以最佳地利用温度依赖的材料性质,用于实现高性能热电器件。(4)使用基于激光的AM,直接制造热电材料、热绝缘层、电导体层和热交换器作为功能和集成的能量收集系统,与传统制造方法相比,可以产生更高的机械稳定性和热可靠性。该技术的特点是低成本,高效率和工业可扩展的清洁能源系统纳米制造,如果成功测试和验证,将对许多与能源和制造系统相关的行业(如汽车,发电站,钢铁厂等)极具吸引力。了解热电材料电子和声子传输的基本原理,开发下一代制造工具,设计新型传热系统将提高能源系统的效率,减少美国对外国能源的依赖。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lei Zuo其他文献

Echocardiography Guided Liwen Procedure™ for the treatment of obstructive hypertrophic cardiomyopathy in a patient with prior aortic valve replacement surgery
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
  • 作者:
    Liwen Liu;Mengyao Zhou;Lei Zuo;Jing Li;Wensheng Chen;Bo Xu;David H. Hsi
  • 通讯作者:
    David H. Hsi
Customer Arrival Event Processing on Computer Simulation for Discrete Event System
离散事件系统计算机仿真的顾客到达事件处理
  • DOI:
    10.4028/www.scientific.net/amm.513-517.2133
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Yao;X. Chen;Lei Zuo
  • 通讯作者:
    Lei Zuo
Electrical power potential of a wave energy converter using an active mechanical motion rectifier based power take-off
使用基于主动机械运动整流器的动力输出系统的波浪能转换器的电能潜力
  • DOI:
    10.1016/j.renene.2025.123477
  • 发表时间:
    2025-10-15
  • 期刊:
  • 影响因子:
    9.100
  • 作者:
    Lisheng Yang;Jianuo Huang;Steven J. Spencer;Xiaofan Li;Jia Mi;Giorgio Bacelli;Muhammad Hajj;Lei Zuo
  • 通讯作者:
    Lei Zuo
Oscillating surge wave energy converter using a novel above-water power takeoff with belt-arc speed amplification
  • DOI:
    10.1016/j.oceaneng.2024.118503
  • 发表时间:
    2024-10-15
  • 期刊:
  • 影响因子:
  • 作者:
    Jia Mi;Jianuo Huang;Xiaofan Li;Alaa Ahmed;Lisheng Yang;Uihoon Chung;Raju Datla;Muhammad Hajj;Lei Zuo
  • 通讯作者:
    Lei Zuo
Wave devouring propulsion for stabilizing floating wind turbine platform: Experimental study
  • DOI:
    10.1016/j.oceaneng.2024.119799
  • 发表时间:
    2025-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Jingru Xing;Junxian Wang;Ashkan Matin;Ninad Prashant Vaidya;Liang Yang;Nicholas Townsend;Lei Zuo
  • 通讯作者:
    Lei Zuo

Lei Zuo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lei Zuo', 18)}}的其他基金

Collaborative Research: GOALI: Bio-inspired bistable energy harvesting for fish telemetry tags
合作研究:GOALI:用于鱼类遥测标签的仿生双稳态能量收集
  • 批准号:
    2245117
  • 财政年份:
    2022
  • 资助金额:
    $ 25.57万
  • 项目类别:
    Standard Grant
INFEWS US-China: Creating Ocean Wave Powered Resilient FEW Systems in Saline Coastal Regions
INFEWS 美中:在盐碱海岸地区创建海浪驱动的弹性 FEW 系统
  • 批准号:
    2246608
  • 财政年份:
    2022
  • 资助金额:
    $ 25.57万
  • 项目类别:
    Standard Grant
LEAP-HI: US-Ireland R&D Partnership: Control Co-Design for Ocean Wave Energy Conversion
LEAP-HI:美国-爱尔兰 R
  • 批准号:
    2152694
  • 财政年份:
    2022
  • 资助金额:
    $ 25.57万
  • 项目类别:
    Continuing Grant
INFEWS US-China: Creating Ocean Wave Powered Resilient FEW Systems in Saline Coastal Regions
INFEWS 美中:在盐碱海岸地区创建海浪驱动的弹性 FEW 系统
  • 批准号:
    1903627
  • 财政年份:
    2019
  • 资助金额:
    $ 25.57万
  • 项目类别:
    Standard Grant
Collaborative Research: GOALI: Bio-inspired bistable energy harvesting for fish telemetry tags
合作研究:GOALI:用于鱼类遥测标签的仿生双稳态能量收集
  • 批准号:
    1935951
  • 财政年份:
    2019
  • 资助金额:
    $ 25.57万
  • 项目类别:
    Standard Grant
Collaborative Research: Net-Shape and Scalable Additive Manufacturing for Thermoelectric Waste Heat Recovery Materials and Devices using Selective Laser Melting
合作研究:使用选择性激光熔化进行热电废热回收材料和设备的净形状和可扩展增材制造
  • 批准号:
    1915946
  • 财政年份:
    2019
  • 资助金额:
    $ 25.57万
  • 项目类别:
    Standard Grant
GOALI: Collaborative Research: Energy harvesting nanorods-enhanced MEMS temperature-insensitive gas sensor for combustion monitoring and control
GOALI:合作研究:用于燃烧监测和控制的能量收集纳米棒增强型 MEMS 温度不敏感气体传感器
  • 批准号:
    1508862
  • 财政年份:
    2015
  • 资助金额:
    $ 25.57万
  • 项目类别:
    Standard Grant
GOALI: Energy Efficient and Reliable Motion Mechanism for Ocean Wave Energy Harvesting
GOALI:用于海浪能量收集的节能且可靠的运动机制
  • 批准号:
    1435867
  • 财政年份:
    2014
  • 资助金额:
    $ 25.57万
  • 项目类别:
    Standard Grant
Vibration Control of Tall Buildings Using Electricity Generating Tuned Mass Dampers
使用发电调谐质量阻尼器控制高层建筑的振动
  • 批准号:
    1529380
  • 财政年份:
    2014
  • 资助金额:
    $ 25.57万
  • 项目类别:
    Standard Grant
GOALI/Collaborative Research: Self-powered Dual-mode Piezoelectric Resonant Pressure/Temperature Sensors for Oil and Gas Field Explorations
GOALI/合作研究:用于油气田勘探的自供电双模压电谐振压力/温度传感器
  • 批准号:
    1529842
  • 财政年份:
    2014
  • 资助金额:
    $ 25.57万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Cortical Perineuronal Net Regulation of Maternal Caregiving Behaviors
合作研究:母亲护理行为的皮质神经周围网络调节
  • 批准号:
    2336907
  • 财政年份:
    2024
  • 资助金额:
    $ 25.57万
  • 项目类别:
    Continuing Grant
Collaborative Research: GEO OSE Track 2: QGreenland-Net: Open, connected data infrastructure for Greenland-focused geoscience, and beyond
合作研究:GEO OSE 第 2 轨:QGreenland-Net:面向格陵兰岛地球科学及其他领域的开放、互联数据基础设施
  • 批准号:
    2324766
  • 财政年份:
    2024
  • 资助金额:
    $ 25.57万
  • 项目类别:
    Standard Grant
Collaborative Research: Cortical Perineuronal Net Regulation of Maternal Caregiving Behaviors
合作研究:母亲护理行为的皮质神经周围网络调节
  • 批准号:
    2336906
  • 财政年份:
    2024
  • 资助金额:
    $ 25.57万
  • 项目类别:
    Continuing Grant
Collaborative Research: GEO OSE Track 2: QGreenland-Net: Open, connected data infrastructure for Greenland-focused geoscience, and beyond
合作研究:GEO OSE 第 2 轨:QGreenland-Net:面向格陵兰岛地球科学及其他领域的开放、互联数据基础设施
  • 批准号:
    2324765
  • 财政年份:
    2024
  • 资助金额:
    $ 25.57万
  • 项目类别:
    Standard Grant
Collaborative Research: Corporate Net Zero Goals for Decarbonization
合作研究:企业脱碳净零目标
  • 批准号:
    2319901
  • 财政年份:
    2023
  • 资助金额:
    $ 25.57万
  • 项目类别:
    Standard Grant
Collaborative Research: Corporate Net Zero Goals for Decarbonization
合作研究:企业脱碳净零目标
  • 批准号:
    2319900
  • 财政年份:
    2023
  • 资助金额:
    $ 25.57万
  • 项目类别:
    Standard Grant
Collaborative Research: STEPP-NET: Steppe Parasite Networks
合作研究:STEPP-NET:草原寄生虫网络
  • 批准号:
    2120468
  • 财政年份:
    2021
  • 资助金额:
    $ 25.57万
  • 项目类别:
    Standard Grant
Collaborative Research: STEPP-NET: Steppe Parasite Networks
合作研究:STEPP-NET:草原寄生虫网络
  • 批准号:
    2120471
  • 财政年份:
    2021
  • 资助金额:
    $ 25.57万
  • 项目类别:
    Standard Grant
Collaborative Research: AccelNet: Clean Air Monitoring and Solutions Network (CAMS-Net)
合作研究:AccelNet:清洁空气监测和解决方案网络(CAMS-Net)
  • 批准号:
    2020666
  • 财政年份:
    2021
  • 资助金额:
    $ 25.57万
  • 项目类别:
    Standard Grant
Collaborative Research: AccelNet: Clean Air Monitoring and Solutions Network (CAMS-Net)
合作研究:AccelNet:清洁空气监测和解决方案网络(CAMS-Net)
  • 批准号:
    2020677
  • 财政年份:
    2021
  • 资助金额:
    $ 25.57万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了