Collaborative Research: New Birational Invariants
合作研究:新的双有理不变量
基本信息
- 批准号:2245099
- 负责人:
- 金额:$ 48.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Algebraic varieties are shapes defined by solution sets of systems of polynomial equations. They appear naturally in different fields of science and engineering, including physics, cryptography, control theory, robotics, computer vision, etc,. A fundamental problem in geometry is the classification of algebraic varieties, as it helps us gain a better understanding of the structures and relations between them. The first step in classification is called birational classification, i.e. two algebraic varieties are called birational if they are equal outside some lower-dimensional loci. In this proposal, the PIs will investigate new birational invariants. These invariants will shed new light on the birational classification problem. The Principal Investigators will bring new ideas from differential equations, category theory, mirror symmetry and conformal field theory for achieving this goal. This project will provide research training opportunities for graduate students and early-career researchers.More concretely, the Principal Investigators will develop an extended theory of variations of non-commutative Hodge structures. It will be based on a new singularity theory of Landau-Ginzburg models and a non-commutative refinement of the notion of spectrum of quantum multiplication operators. These new non-commutative spectra will provide natural obstructions to rationality and equivariant rationality of Fano varieties. Additionally the PIs will investigate the connection between non-commutative spectra and R-charges of conformal field theories. This will lead to even stronger birational invariants, as well as to new unexpected bridges between geometry and other branches of mathematics, including: a new connection between Steenbrink spectra and the spectra of conformal weights in vertex operator algebras; a connection between topological invariants of 3-manifolds and non-commutative spectra of complex surfaces; semicontinuity of non-commutative spectra of algebraic varieties and the RG-flows on sigma-models with targets on such varieties; and a relation between the Kaehler-Ricci flow and the RG-flow.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
代数簇是由多项式方程组的解集定义的形状。它们自然地出现在科学和工程的不同领域,包括物理学、密码学、控制理论、机器人、计算机视觉等。几何中的一个基本问题是代数簇的分类,因为它有助于我们更好地理解它们之间的结构和关系。分类的第一步称为双有理分类,即如果两个代数簇在某些低维轨迹之外相等,则称为双有理。在本提案中,PI 将研究新的双有理不变量。这些不变量将为双理性分类问题提供新的思路。首席研究员将从微分方程、范畴论、镜像对称和共形场论中带来新的想法来实现这一目标。该项目将为研究生和早期职业研究人员提供研究培训机会。更具体地说,主要研究人员将开发非交换霍奇结构变体的扩展理论。它将基于朗道-金兹堡模型的新奇点理论和量子乘法算子谱概念的非交换细化。这些新的非交换谱将为 Fano 簇的理性和等变理性提供天然障碍。此外,PI 还将研究非交换谱与共形场论的 R 电荷之间的联系。这将导致更强的双有理不变量,以及几何学和其他数学分支之间新的意想不到的桥梁,包括:Steenbrink 谱和顶点算子代数中的共形权谱之间的新联系; 3-流形的拓扑不变量与复杂曲面的非交换谱之间的联系;代数簇的非交换谱的半连续性以及以此类簇为目标的 sigma 模型上的 RG 流;该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tony Yue Yu其他文献
Higher analytic stacks and GAGA theorems
更高层次的分析堆栈和 GAGA 定理
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Mauro Porta;Tony Yue Yu - 通讯作者:
Tony Yue Yu
The non-archimedean SYZ fibration
非阿基米德 SYZ 纤维化
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:1.8
- 作者:
J. Nicaise;Chenyang Xu;Tony Yue Yu - 通讯作者:
Tony Yue Yu
Derived non-archimedean analytic spaces
导出的非阿基米德解析空间
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Mauro Porta;Tony Yue Yu - 通讯作者:
Tony Yue Yu
Reciprocal motion at low Reynolds numbers
低雷诺数下的往复运动
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
E. Lauga;Renaud Trouilloud;Tony Yue Yu;A. Hosoi - 通讯作者:
A. Hosoi
Tropicalization of the moduli space of stable maps
稳定映射模空间的热带化
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Tony Yue Yu - 通讯作者:
Tony Yue Yu
Tony Yue Yu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tony Yue Yu', 18)}}的其他基金
A Non-Archimedean Approach to Mirror Symmetry
镜像对称的非阿基米德方法
- 批准号:
2302095 - 财政年份:2023
- 资助金额:
$ 48.14万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348998 - 财政年份:2025
- 资助金额:
$ 48.14万 - 项目类别:
Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348999 - 财政年份:2025
- 资助金额:
$ 48.14万 - 项目类别:
Standard Grant
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
- 批准号:
2341426 - 财政年份:2024
- 资助金额:
$ 48.14万 - 项目类别:
Continuing Grant
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
- 批准号:
2341424 - 财政年份:2024
- 资助金额:
$ 48.14万 - 项目类别:
Continuing Grant
Collaborative Research: New to IUSE: EDU DCL:Diversifying Economics Education through Plug and Play Video Modules with Diverse Role Models, Relevant Research, and Active Learning
协作研究:IUSE 新增功能:EDU DCL:通过具有不同角色模型、相关研究和主动学习的即插即用视频模块实现经济学教育多元化
- 批准号:
2315700 - 财政年份:2024
- 资助金额:
$ 48.14万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: New Directions in Algorithmic Replicability
合作研究:AF:小:算法可复制性的新方向
- 批准号:
2342244 - 财政年份:2024
- 资助金额:
$ 48.14万 - 项目类别:
Standard Grant
Collaborative Research: On New Directions for the Derivation of Wave Kinetic Equations
合作研究:波动力学方程推导的新方向
- 批准号:
2306378 - 财政年份:2024
- 资助金额:
$ 48.14万 - 项目类别:
Standard Grant
Collaborative Research: New to IUSE: EDU DCL:Diversifying Economics Education through Plug and Play Video Modules with Diverse Role Models, Relevant Research, and Active Learning
协作研究:IUSE 新增功能:EDU DCL:通过具有不同角色模型、相关研究和主动学习的即插即用视频模块实现经济学教育多元化
- 批准号:
2315699 - 财政年份:2024
- 资助金额:
$ 48.14万 - 项目类别:
Standard Grant
Collaborative Research: Understanding New Labor Relations for the 21st Century
合作研究:理解21世纪的新型劳动关系
- 批准号:
2346230 - 财政年份:2024
- 资助金额:
$ 48.14万 - 项目类别:
Standard Grant
Collaborative Research: New Regression Models and Methods for Studying Multiple Categorical Responses
合作研究:研究多重分类响应的新回归模型和方法
- 批准号:
2415067 - 财政年份:2024
- 资助金额:
$ 48.14万 - 项目类别:
Continuing Grant














{{item.name}}会员




