CDS&E: Collaborative Research: A Computational Framework for Reconstructing and Visualizing Myocardial Active Stresses
CDS
基本信息
- 批准号:1808530
- 负责人:
- 金额:$ 52.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-10-01 至 2023-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The normal heart functions by contracting and pushing the blood from the left ventricle into the rest of the body. Due to various diseases, the contraction capabilities of the heart become diminished in certain regions of the heart chamber wall, compromising the overall function of the heart. In order to identify and select optimal treatment, it is critical to identify the regions of the heart wall that exhibit reduced contractions. Unfortunately, contractions cannot be easily measured. This project will estimate the stress (contraction power) developed within the heart muscle by combining medical imaging and mechanical modeling of the heart. These stresses will serve as a quantitative measure of the contractile function of the heart and help detect and localize disease. Therefore, this research has the potential to evolve into a future tool to diagnose cardiac function. This project will also feature a synergistically integrated education and outreach program. We will foster research opportunities for graduate and undergraduate students in computer science, biomedical engineering, mathematics, and imaging science at Rochester Institute of Technology and the University of Kansas. The PIs will develop innovative hands-on workshops to inspire and educate K-12 students from underrepresented groups on biomedical computing and medicine. This project proposes to develop a method that enables non-invasive appraisal and visualization of the active stresses developed in the myocardium to serve as a direct means to assess the bio-mechanical function of the heart. The PIs will develop open-source cyberinfrastructure and integrate it into a novel computational framework for cardiac biomechanics that will reconstruct the active stresses from cardiac deformations. The PIs will accomplish this goal by developing and integrating techniques for medical image computing, high-order meshing, and inverse-problem bio-mechanical modeling. This research will address a currently unexplored niche in the cardiac modeling field, specifically the reconstruction and visualization of myocardial active stresses, to enable direct appraisal of cardiac function. This research will contribute to medical image computing through the development of algorithms for medical image processing and visualization. The PIs will develop and implement novel high-order meshing techniques and integrate them with the fiber architecture to enable accurate and efficient scientific modeling and computing. The project will contribute new knowledge in mathematical modeling and simulation by implementing efficient nonlinear least-squares solutions for inverse cardiac biomechanics. Lastly, the PIs will release the resulting cyberinfrastructure to the scientific computing community for research and education use.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
正常的心脏通过收缩并将血液从左心室推入身体的其他部位来发挥作用。由于各种疾病,心脏的收缩能力在心腔壁的某些区域变得减弱,从而损害心脏的整体功能。为了确定和选择最佳的治疗方法,确定心壁收缩减少的区域是至关重要的。不幸的是,收缩不容易测量。这个项目将通过结合医学成像和心脏的机械建模来估计心肌内产生的应力(收缩能力)。这些压力将作为心脏收缩功能的定量测量,并有助于检测和定位疾病。因此,这项研究有可能演变为未来诊断心脏功能的工具。该项目还将以协同整合的教育和外联计划为特色。我们将为罗切斯特理工学院和堪萨斯大学计算机科学、生物医学工程、数学和成像科学的研究生和本科生培养研究机会。PIS将开发创新的动手工作坊,以启发和教育来自代表性不足群体的K-12学生生物医学计算和医学。该项目建议开发一种方法,能够对心肌中形成的主动应力进行非侵入性评估和可视化,作为评估心脏生物机械功能的直接手段。PIS将开发开源的网络基础设施,并将其集成到心脏生物力学的新计算框架中,该框架将重建心脏变形的主动应力。PI将通过开发和集成医学图像计算、高阶网格划分和反问题生物力学建模技术来实现这一目标。这项研究将解决目前心脏建模领域中一个尚未探索的领域,特别是心肌主动应力的重建和可视化,以实现对心功能的直接评估。这项研究将通过开发医学图像处理和可视化的算法来为医学图像计算做出贡献。PI将开发和实施新颖的高阶网格技术,并将它们与光纤体系结构相结合,以实现准确而高效的科学建模和计算。该项目将通过实现心脏生物力学逆问题的高效非线性最小二乘解,在数学建模和仿真方面贡献新的知识。最后,PIS将把由此产生的网络基础设施发布给科学计算社区用于研究和教育。这一奖励反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(44)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An Unsupervised Deep Learning Framework for Image Super-Resolution for Late Gadolinium Enhanced Cardiac MRI
用于晚期钆增强心脏 MRI 图像超分辨率的无监督深度学习框架
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Upendra RR, Simon R
- 通讯作者:Upendra RR, Simon R
An implementation of data assimilation techniques for transmural visualization of action potential propagation in cardiac tissue
心脏组织动作电位传播透壁可视化数据同化技术的实现
- DOI:10.1117/12.2550467
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Beam, Christopher;Linte, Cristian A.;Otani, Niels F.
- 通讯作者:Otani, Niels F.
Learning Deep Representations of Cardiac Structures for 4D Cine MRI Image Segmentation through Semi-Supervised Learning
- DOI:10.3390/app122312163
- 发表时间:2022-11
- 期刊:
- 影响因子:0
- 作者:S. Hasan;C. Linte
- 通讯作者:S. Hasan;C. Linte
LEFT VENTRICULAR EJECTION FRACTION: COMPARISON BETWEEN TRUE VOLUME-BASED MEASUREMENTS AND AREA-BASED ESTIMATES.
左心室射血分数:基于真实体积的测量值和基于面积的估计值之间的比较。
- DOI:10.1109/wnyipw.2018.8576438
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Liu,Dawei;Peck,Isabelle;Dangi,Shusil;Schwarz,KarlQ;Linte,CristianA
- 通讯作者:Linte,CristianA
Reconstructing Cardiac Wave Dynamics From Myocardial Motion Data.
- DOI:10.22489/cinc.2020.216
- 发表时间:2020-09
- 期刊:
- 影响因子:0
- 作者:Beam CB;Linte CA;Otani NF
- 通讯作者:Otani NF
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cristian Linte其他文献
PO-718-08 PREDICTING TISSUE CONDUCTANCE CHANGES AND ABLATION LESION PATTERNS USING A QUASI-DYNAMIC PULSED FIELD ELECTROPORATION NUMERICAL MODEL FOR CARDIAC ABLATION
- DOI:
10.1016/j.hrthm.2022.03.1193 - 发表时间:
2022-05-01 - 期刊:
- 影响因子:5.700
- 作者:
Nishaki Mehta;Richard Simon;Kuldeep Shah;David E. Haines;Cristian Linte - 通讯作者:
Cristian Linte
Cristian Linte的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cristian Linte', 18)}}的其他基金
Collaborative Research: CDS&E: An experimentally validated, interactive, data-enabled scientific computing platform for cardiac tissue ablation characterization and monitoring
合作研究:CDS
- 批准号:
2245152 - 财政年份:2023
- 资助金额:
$ 52.33万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348998 - 财政年份:2025
- 资助金额:
$ 52.33万 - 项目类别:
Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348999 - 财政年份:2025
- 资助金额:
$ 52.33万 - 项目类别:
Standard Grant
Collaborative Research: Investigating Southern Ocean Sea Surface Temperatures and Freshening during the Late Pliocene and Pleistocene along the Antarctic Margin
合作研究:调查上新世晚期和更新世沿南极边缘的南大洋海面温度和新鲜度
- 批准号:
2313120 - 财政年份:2024
- 资助金额:
$ 52.33万 - 项目类别:
Standard Grant
Collaborative Research: Non-Linearity and Feedbacks in the Atmospheric Circulation Response to Increased Carbon Dioxide (CO2)
合作研究:大气环流对二氧化碳 (CO2) 增加的响应的非线性和反馈
- 批准号:
2335762 - 财政年份:2024
- 资助金额:
$ 52.33万 - 项目类别:
Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
- 批准号:
2335802 - 财政年份:2024
- 资助金额:
$ 52.33万 - 项目类别:
Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
- 批准号:
2335801 - 财政年份:2024
- 资助金额:
$ 52.33万 - 项目类别:
Standard Grant
Collaborative Research: Holocene biogeochemical evolution of Earth's largest lake system
合作研究:地球最大湖泊系统的全新世生物地球化学演化
- 批准号:
2336132 - 财政年份:2024
- 资助金额:
$ 52.33万 - 项目类别:
Standard Grant
Collaborative Research: LTREB: The importance of resource availability, acquisition, and mobilization to the evolution of life history trade-offs in a variable environment.
合作研究:LTREB:资源可用性、获取和动员对于可变环境中生命史权衡演变的重要性。
- 批准号:
2338394 - 财政年份:2024
- 资助金额:
$ 52.33万 - 项目类别:
Continuing Grant
Collaborative Research: Constraining next generation Cascadia earthquake and tsunami hazard scenarios through integration of high-resolution field data and geophysical models
合作研究:通过集成高分辨率现场数据和地球物理模型来限制下一代卡斯卡迪亚地震和海啸灾害情景
- 批准号:
2325311 - 财政年份:2024
- 资助金额:
$ 52.33万 - 项目类别:
Standard Grant
Collaborative Research: BoCP-Implementation: Testing Evolutionary Models of Biotic Survival and Recovery from the Permo-Triassic Mass Extinction and Climate Crisis
合作研究:BoCP-实施:测试二叠纪-三叠纪大规模灭绝和气候危机中生物生存和恢复的进化模型
- 批准号:
2325380 - 财政年份:2024
- 资助金额:
$ 52.33万 - 项目类别:
Standard Grant