I-Corps: Machine Learning Enhanced Automated Circuit Configuration and Evaluation of Power Converters

I-Corps:机器学习增强电源转换器的自动化电路配置和评估

基本信息

项目摘要

The broader impact/commercial potential of this I-Corps project is the development of power electronics to automate complex circuit design. While significant progress has been made in advancing modeling simulation and verifying electrical power converters, the process of designing such devices remains inefficient in terms of time and cost. The state-of-the-art circuit design of power converters relies heavily on human experts to select the optimal topology and search for design parameters with human experience and intuitions. This process can be very time-consuming, inefficient, and labor-intensive. The proposed software may help power electronics engineers consider a wide range of novel concepts more rapidly and cost-effectively before selecting an engineering-optimal architecture for high-fidelity design and evaluation.This I-Corps project is based on the development of technology that integrates recent breakthroughs in machine learning, power electronics, data analytics, simulation software, and optimization to automate the circuit design of electrical power converters. The technology may also facilitate the integration of the proposed software tools into existing power-converter design workflows. The technology seeks to automatically generate and evaluate power converter designs with physics-based Reduced Order Models: automatically evolving architecture concepts toward the optimal system configurations and automatically generating, evaluating and optimizing architectures within acceptable performance uncertainties while satisfying the desired outputs.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个I-Corps项目更广泛的影响/商业潜力是开发电力电子技术,以自动化复杂的电路设计。虽然在推进建模仿真和验证电力转换器方面已经取得了重大进展,但设计这种设备的过程在时间和成本方面仍然效率低下。功率变换器的电路设计主要依赖于人类的经验和直觉来选择最优拓扑和搜索设计参数。 这个过程可能非常耗时、低效和劳动密集型。所提出的软件可以帮助电力电子工程师在选择工程最佳架构进行高保真设计和评估之前,更快速,更经济地考虑各种新概念。这个I-Corps项目基于技术的发展,集成了机器学习,电力电子,数据分析,仿真软件,和优化以使电力转换器的电路设计自动化。 该技术还可以促进将所提出的软件工具集成到现有的功率转换器设计工作流程中。该技术旨在通过基于物理的降阶模型自动生成和评估电源转换器设计:自动地朝着最佳系统配置演进体系结构概念并自动地生成,在可接受的性能不确定性范围内评估和优化体系结构,同时满足期望的输出。该奖项反映了NSF的法定使命,并被认为是值得通过使用基金会的知识价值和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wencong Su其他文献

Attention-Focused Machine Learning Method to Provide the Stochastic Load Forecasts Needed by Electric Utilities for the Evolving Electrical Distribution System
注意力集中机器学习方法为不断发展的配电系统提供电力公司所需的随机负荷预测
  • DOI:
    10.3390/en16155661
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    John O’Donnell;Wencong Su
  • 通讯作者:
    Wencong Su
Classification of electricity customer groups towards individualized price scheme design
电力客户群体分类,个性化电价方案设计
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tao Chen;Kun Qian;A. Mutanen;Bjcorn Schuller;P. Järventausta;Wencong Su
  • 通讯作者:
    Wencong Su
A Literature Review of Stochastic Programming and Unit Commitment
随机规划和单位承诺的文献综述
A digital testbed for a PHEV/PEV enabled parking lot in a Smart Grid environment
智能电网环境中支持 PHEV/PEV 的停车场的数字测试台
The Role of Customers in the U.S. Electricity Market: Past, Present and Future
  • DOI:
    10.1016/j.tej.2014.07.006
  • 发表时间:
    2014-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Wencong Su
  • 通讯作者:
    Wencong Su

Wencong Su的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wencong Su', 18)}}的其他基金

PFI (MCA): Enhancing Grid Reliability and Stability with Distributed Energy Resources
PFI (MCA):利用分布式能源增强电网可靠性和稳定性
  • 批准号:
    2321661
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Collaborative Research: Large-Signal Stability Analysis and Enhancement of Converter-Dominated DC Microgrid
合作研究:变流器主导的直流微电网的大信号稳定性分析与增强
  • 批准号:
    2034938
  • 财政年份:
    2020
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
REU Site: Undergraduate Research in Sustainable Energy (U-RISE)
REU 网站:可持续能源本科研究 (U-RISE)
  • 批准号:
    1757522
  • 财政年份:
    2018
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
I-Corps: Distributed Energy Management Systems for Grid Integration of Distributed Energy Storage Devices
I-Corps:用于分布式储能设备并网的分布式能源管理系统
  • 批准号:
    1445846
  • 财政年份:
    2014
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant

相似国自然基金

Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目

相似海外基金

I-Corps: Translation potential of using machine learning to predict oxaliplatin chemotherapy benefit in early colon cancer
I-Corps:利用机器学习预测奥沙利铂化疗对早期结肠癌疗效的转化潜力
  • 批准号:
    2425300
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
I-Corps: Translation Potential of a Machine Learning Risk Stratification Tool for Venous Thromboembolism
I-Corps:机器学习风险分层工具对静脉血栓栓塞的转化潜力
  • 批准号:
    2420417
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
I-Corps: Machine Learning-Based Burn Injury Diagnosis and Care
I-Corps:基于机器学习的烧伤诊断和护理
  • 批准号:
    2326781
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
I-Corps: A Machine Learning Tool for Medical Device History and Recalls
I-Corps:用于医疗器械历史和召回的机器学习工具
  • 批准号:
    2334058
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
I-Corps: Machine Learning Algorithm for Cardiovascular Disease Diagnosis
I-Corps:用于心血管疾病诊断的机器学习算法
  • 批准号:
    2331156
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
I-Corps: A machine learning model based on neural networks trained to recognize correlations and patterns that indicates possible medical complications
I-Corps:基于神经网络的机器学习模型,经过训练可以识别指示可能的医疗并发症的相关性和模式
  • 批准号:
    2321426
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
I-Corps: Machine Learning and Bio-Signal Processing for Enhancing Empathy Training
I-Corps:用于增强同理心训练的机器学习和生物信号处理
  • 批准号:
    2237325
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
I-Corps: Fast and Accurate Artificial Intelligence/Machine Learning Solutions to Inverse and Imaging Problems
I-Corps:针对逆向和成像问题的快速准确的人工智能/机器学习解决方案
  • 批准号:
    2224299
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
I-Corps: Automated Pavement Evaluation Using Advanced Machine Learning
I-Corps:使用先进机器学习自动路面评估
  • 批准号:
    2229743
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
I-Corps: Metabolomics and Machine Learning Platform for Diagnostics
I-Corps:用于诊断的代谢组学和机器学习平台
  • 批准号:
    2054157
  • 财政年份:
    2021
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了