I-Corps: A machine learning model based on neural networks trained to recognize correlations and patterns that indicates possible medical complications

I-Corps:基于神经网络的机器学习模型,经过训练可以识别指示可能的医疗并发症的相关性和模式

基本信息

  • 批准号:
    2321426
  • 负责人:
  • 金额:
    $ 5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-05-01 至 2024-10-31
  • 项目状态:
    已结题

项目摘要

The broader impact/commercial potential of this I-Corps project is the development of a health and wellness software application that supports individuals with chronic illnesses such as prediabetes/diabetes, cholesterol, hypertension, infertility and obesity among others. . Many individuals have questions, preferences, and health issues that are not adequately addressed by routine Primary Care Physician (PCP) care. Based on algorithmic recommendations, the proposed technology is designed to connect users with alternative health care providers who have expertise in treating concerns such as sleep disorders, stress management, lactation, mental health, nutrition, and pelvic floor therapists. Currently, patients rely on recommendations and referrals from their PCP/OBGYN for knowledge about these types of care. In addition, corporations or insurance companies may offer the proposed product as part of their benefits packages similar to preventative programs in tobacco cessation or stress management. The core AI algorithms also may be applied to other healthcare sectors.This I-Corps project is based on the development of a set of algorithms comprising machine learning models. The models are trained to recognize correlations and patterns that could indicate possible medical complications, based on inputs such as electronic health records (e.g. genetic profiles) and IoT sensor data (e.g. oxygen level, heart rate etc.). The research focus is to explore the transformative potential of this sensor-fusion approach, with the requisite sample size of user inputs, to develop risk scores and predict evidence-based medical care pathways, specifically for maternal/post-partum users. While remaining cognizant of potential harmful recommendations generated because of dataset "blind-spots" such as those encountered in other AI applications in healthcare, these findings could then determine optimal recommendations to be delivered to users through user-friendly "nudges" leveraging advancements in behavioral psychology. Prioritizing privacy, the method of data collection would rely on user opt-in consent and a proprietary end-to-end silent authentication mechanism instead of OAuth/RSA tokens that are more vulnerable to hacking and privilege escalation. With a user's opt-in consent, raw patient data as well personalized recommendations could be made available directly to a provider to further inform care.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个I-Corps项目的更广泛的影响/商业潜力是开发一个健康和保健软件应用程序,支持患有前驱糖尿病/糖尿病、胆固醇、高血压、不孕症和肥胖症等慢性疾病的个人。许多人有问题、偏好和健康问题,这些问题没有得到常规初级保健医生(PCP)护理的充分解决。基于算法推荐,拟议的技术旨在将用户与具有治疗诸如睡眠障碍、压力管理、哺乳、心理健康、营养和盆底治疗师等问题的专业知识的替代医疗保健提供者联系起来。目前,患者依靠PCP/OBGYN的推荐和转诊来获得这些类型的护理知识。此外,公司或保险公司可能会将拟议的产品作为其福利计划的一部分,类似于戒烟或压力管理方面的预防计划。核心人工智能算法也可以应用于其他医疗保健领域。这个I-Corps项目是基于一套包含机器学习模型的算法的开发。这些模型经过训练,可以根据电子健康记录(如基因谱)和物联网传感器数据(如氧气水平、心率等)等输入,识别可能表明可能出现的医疗并发症的相关性和模式。研究重点是探索这种传感器融合方法的变革潜力,根据用户输入的必要样本量,开发风险评分并预测循证医疗护理途径,特别是针对孕产妇/产后用户。虽然仍然认识到由于数据集“盲点”(例如在医疗保健领域的其他人工智能应用中遇到的盲点)而产生的潜在有害建议,但这些发现可以通过利用行为心理学的进步,通过用户友好的“推动”,确定向用户提供的最佳建议。优先考虑隐私,数据收集方法将依赖于用户的选择同意和专有的端到端静默身份验证机制,而不是更容易受到黑客攻击和特权升级的OAuth/RSA令牌。在用户同意的情况下,原始患者数据以及个性化建议可以直接提供给提供者,以进一步为护理提供信息。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alan Hunt其他文献

A Framework for Developing EFL Reading Vocabulary.
开发 EFL 阅读词汇的框架。
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alan Hunt;D. Beglar
  • 通讯作者:
    D. Beglar
The new legal history: Prospects and perspectives
  • DOI:
    10.1007/bf00728529
  • 发表时间:
    1986-01-01
  • 期刊:
  • 影响因子:
    1.300
  • 作者:
    Alan Hunt
  • 通讯作者:
    Alan Hunt
Methodology in Language Teaching: Implementing Task-Based Language Teaching
语言教学方法论:实施任务型语言教学
  • DOI:
    10.1017/cbo9780511667190.015
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Beglar;Alan Hunt
  • 通讯作者:
    Alan Hunt
Can Marxism Survive
马克思主义能否生存
  • DOI:
    10.1080/08935699208658012
  • 发表时间:
    1992
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alan Hunt
  • 通讯作者:
    Alan Hunt
Revising and validating the 2000 Word Level and University Word Level Vocabulary Tests
修订和验证 2000 年单词水平和大学单词水平词汇测试
  • DOI:
    10.1177/026553229901600202
  • 发表时间:
    1999
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    D. Beglar;Alan Hunt
  • 通讯作者:
    Alan Hunt

Alan Hunt的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alan Hunt', 18)}}的其他基金

CAREER: The Biomechanics of Chromosome Movement
职业:染色体运动的生物力学
  • 批准号:
    0133659
  • 财政年份:
    2002
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant

相似国自然基金

Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
非标准随机调度模型的最优动态策略
  • 批准号:
    71071056
  • 批准年份:
    2010
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目
微生物发酵过程的自组织建模与优化控制
  • 批准号:
    60704036
  • 批准年份:
    2007
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

I-Corps: Translation potential of using machine learning to predict oxaliplatin chemotherapy benefit in early colon cancer
I-Corps:利用机器学习预测奥沙利铂化疗对早期结肠癌疗效的转化潜力
  • 批准号:
    2425300
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
I-Corps: Translation Potential of a Machine Learning Risk Stratification Tool for Venous Thromboembolism
I-Corps:机器学习风险分层工具对静脉血栓栓塞的转化潜力
  • 批准号:
    2420417
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
I-Corps: Machine Learning-Based Burn Injury Diagnosis and Care
I-Corps:基于机器学习的烧伤诊断和护理
  • 批准号:
    2326781
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
I-Corps: Machine Learning Algorithm for Cardiovascular Disease Diagnosis
I-Corps:用于心血管疾病诊断的机器学习算法
  • 批准号:
    2331156
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
I-Corps: A Machine Learning Tool for Medical Device History and Recalls
I-Corps:用于医疗器械历史和召回的机器学习工具
  • 批准号:
    2334058
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
I-Corps: Machine Learning and Bio-Signal Processing for Enhancing Empathy Training
I-Corps:用于增强同理心训练的机器学习和生物信号处理
  • 批准号:
    2237325
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
I-Corps: Machine Learning Enhanced Automated Circuit Configuration and Evaluation of Power Converters
I-Corps:机器学习增强电源转换器的自动化电路配置和评估
  • 批准号:
    2245187
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
I-Corps: Fast and Accurate Artificial Intelligence/Machine Learning Solutions to Inverse and Imaging Problems
I-Corps:针对逆向和成像问题的快速准确的人工智能/机器学习解决方案
  • 批准号:
    2224299
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
I-Corps: Automated Pavement Evaluation Using Advanced Machine Learning
I-Corps:使用先进机器学习自动路面评估
  • 批准号:
    2229743
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
I-Corps: Metabolomics and Machine Learning Platform for Diagnostics
I-Corps:用于诊断的代谢组学和机器学习平台
  • 批准号:
    2054157
  • 财政年份:
    2021
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了