CRII: OAC: Improved Cyberinfrastructure Usage through High-Fidelity Isogeometric Volumetric Spline Model Generation
CRII:OAC:通过高保真等几何体积样条模型生成改进网络基础设施的使用
基本信息
- 批准号:2245491
- 负责人:
- 金额:$ 17.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Physics-based scientific and engineering inquiry relies heavily on the use of computational models, including the finite element method. For particularly complex models, such as those used in automotive crash or those of national defense interest. Current techniques to achieve these analyses consume significant computational resources, approximate the geometries of intended objects for analysis, and do not leverage modern high-accuracy computational tools for the finite element method. Even though research has progressed to show that so-called isogeometric finite element methods are more accurate than traditional finite element methods for computational analysis, the scientific and engineering community lacks the tools necessary to generate computational models suitable for such analyses. This research creates a framework through which scientists and engineers can convert a computer-aided model or mesh of a geometry or potential design into a three-dimensional representation that directly represents the intended domain without approximation and that leverages spline-based isogeometric tools for more accurate physics-based simulations. This work supports national security interests by providing access to higher-fidelity analysis results and by streamlining the process by which engineers arrive at these results. It also helps develop more accurate models for use by the automotive industry such as in simulating crash, resulting in safer and more sustainable vehicles. The developed toolset is made publicly available for use and continued enhancement. The research helps train and diversify the US cyberinfrastructure community through mentoring of undergraduate, graduate, and underrepresented groups in STEM fields.In particular, this work defines a technique to create a well-structured hexahedral decomposition of a computer-aided design geometry or a surface mesh that can be output for use either using traditional finite element methods or more structured isogeometric methods. The framework relies on concepts from differential geometry and Morse theory, and mathematically guarantees a valid volumetric discretization of the geometry from a surface parameterization. Both the theory and the computational tools constructed from the theory are validated by reconstructing (a) a vehicle of interest to the United States Army and (b) a left ventricle of a patient-specific heart model. Finally, both academic and industrial communities are provided access to the developed software through a permissive license that invites use and future development.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
基于物理学的科学和工程研究在很大程度上依赖于计算模型的使用,包括有限元法。对于特别复杂的模型,例如用于汽车碰撞或国防利益的模型。实现这些分析的当前技术消耗大量的计算资源,近似用于分析的预期对象的几何形状,并且不利用用于有限元方法的现代高精度计算工具。尽管研究已经取得进展,表明所谓的等几何有限元方法比传统的有限元方法更准确的计算分析,科学和工程界缺乏必要的工具,以产生适合这种分析的计算模型。这项研究创建了一个框架,通过该框架,科学家和工程师可以将计算机辅助模型或几何形状或潜在设计的网格转换为三维表示,直接表示预期的域而无需近似,并利用基于样条的等几何工具进行更准确的基于物理的模拟。这项工作通过提供更高保真度的分析结果并简化工程师获得这些结果的过程来支持国家安全利益。它还有助于开发更准确的模型,供汽车行业使用,例如模拟碰撞,从而使车辆更安全,更可持续。已开发的工具集已公开提供,供使用和继续改进。这项研究通过指导STEM领域的本科生、研究生和代表性不足的群体,帮助培训和多样化美国网络基础设施社区。特别是,这项工作定义了一种技术,可以创建计算机辅助设计几何形状或表面网格的结构良好的六面体分解,可以使用传统的有限元方法或更结构化的等几何方法输出。该框架依赖于微分几何和莫尔斯理论的概念,并从数学上保证了一个有效的体积离散化的几何表面参数化。通过重建(a)美国陆军感兴趣的车辆和(B)患者特定心脏模型的左心室来验证理论和从理论构建的计算工具。最后,学术界和工业界都可以通过一个许可证来访问开发的软件,该许可证邀请使用和未来的发展。这个奖项反映了NSF的法定使命,并被认为是值得支持的,通过使用基金会的知识价值和更广泛的影响审查标准进行评估。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kendrick Shepherd其他文献
Locally-Verifiable Sufficient Conditions for Exactness of the Hierarchical B-spline Discrete de Rham Complex in $$\mathbb {R}^n$$
- DOI:
10.1007/s10208-024-09659-6 - 发表时间:
2024-12-04 - 期刊:
- 影响因子:2.700
- 作者:
Kendrick Shepherd;Deepesh Toshniwal - 通讯作者:
Deepesh Toshniwal
Kendrick Shepherd的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Z8-12:OH和Z8-14:OAc分别维持梨小食心虫和李小食心虫性诱剂特异性的分子基础
- 批准号:
- 批准年份:2021
- 资助金额:35 万元
- 项目类别:地区科学基金项目
亚硝酰钌配合物[Ru(OAc)(2mqn)2NO]的光异构反应机理研究
- 批准号:21603131
- 批准年份:2016
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
机械化学条件下Mn(OAc)3促进的自由基串联反应研究
- 批准号:21242013
- 批准年份:2012
- 资助金额:10.0 万元
- 项目类别:专项基金项目
相似海外基金
Collaborative Research: OAC CORE: Federated-Learning-Driven Traffic Event Management for Intelligent Transportation Systems
合作研究:OAC CORE:智能交通系统的联邦学习驱动的交通事件管理
- 批准号:
2414474 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CRII: OAC: A Compressor-Assisted Collective Communication Framework for GPU-Based Large-Scale Deep Learning
CRII:OAC:基于 GPU 的大规模深度学习的压缩器辅助集体通信框架
- 批准号:
2348465 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
- 批准号:
2403312 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
OAC Core: Cost-Adaptive Monitoring and Real-Time Tuning at Function-Level
OAC核心:功能级成本自适应监控和实时调优
- 批准号:
2402542 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
OAC Core: OAC Core Projects: GPU Geometric Data Processing
OAC 核心:OAC 核心项目:GPU 几何数据处理
- 批准号:
2403239 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CRII: OAC: Dynamically Adaptive Unstructured Mesh Technologies for High-Order Multiscale Fluid Dynamics Simulations
CRII:OAC:用于高阶多尺度流体动力学仿真的动态自适应非结构化网格技术
- 批准号:
2348394 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CRII: OAC: A Multi-fidelity Computational Framework for Discovering Governing Equations Under Uncertainty
CRII:OAC:用于发现不确定性下控制方程的多保真度计算框架
- 批准号:
2348495 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: Large-Scale Spatial Machine Learning for 3D Surface Topology in Hydrological Applications
合作研究:OAC 核心:水文应用中 3D 表面拓扑的大规模空间机器学习
- 批准号:
2414185 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: Learning AI Surrogate of Large-Scale Spatiotemporal Simulations for Coastal Circulation
合作研究:OAC Core:学习沿海环流大规模时空模拟的人工智能替代品
- 批准号:
2402947 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
- 批准号:
2403313 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant