Spectral and Extremal Graph Theory
谱与极值图论
基本信息
- 批准号:2245556
- 负责人:
- 金额:$ 21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project is in graph theory, where properties and structures of a network are explored. The PI will focus on extremal graph theory which attempts to quantify what combinatorial properties a graph must have when it gets large (where size can be defined by several graph parameters, each giving an interesting theory). The project has two main thrusts. First to study classical Turan and Ramsey theory, two central areas in combinatorics. And second to study extremal problems in spectral graph theory, where one uses linear algebra to deduce combinatorial properties of the graph via matrices. These problems are fundamental ones in graph theory and additionally have applications to finite geometry, combinatorial number theory, combinatorial matrix theory, and theoretical computer science. The project will will also have a specific focus on advising student research. The project will first attempt two notoriously difficult problems in extremal graph theory: finding constructions of graphs certifying lower bounds for bipartite Turan numbers and finding constructions of Ramsey graphs. The PI will develop the recent trend of combining algebraic and geometric objects with probabilistic methods to make progress on these two difficult areas. Second, the project will attempt to solve several long-standing conjectures in spectral graph theory regarding for example spectral gaps of graphs, Nordhaus-Gaddum type problems, and spectral versions of Turan-type problems. Additionally, applications in discrete geometry and combinatorial number theory will be explored using graph theoretic methods.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个项目是在图论中,其中网络的属性和结构进行了探讨。PI将专注于极值图论,它试图量化一个图在变大时必须具有的组合属性(其中大小可以由几个图参数定义,每个参数都给出一个有趣的理论)。该项目有两个主要目标。首先学习经典的图兰和拉姆齐理论,这是组合学的两个核心领域。其次研究谱图理论中的极值问题,即利用线性代数通过矩阵推导图的组合性质。这些问题是图论中的基本问题,并且在有限几何、组合数论、组合矩阵理论和理论计算机科学中也有应用。该项目还将特别关注为学生研究提供建议。该项目将首先尝试极值图论中两个众所周知的困难问题:找到证明二分图兰数下界的图的构造和找到Ramsey图的构造。PI将发展最近的趋势,将代数和几何对象与概率方法相结合,以在这两个困难的领域取得进展。其次,该项目将尝试解决谱图论中的几个长期存在的问题,例如图的谱间隙,Nordhaus-Gaddum型问题和Turan型问题的谱版本。此外,离散几何和组合数论的应用将使用图论方法进行探索。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Tait其他文献
Novel C-7 carbon substituted fourth generation fluoroquinolones targeting <em>N. Gonorrhoeae</em> infections
- DOI:
10.1016/j.bmcl.2020.127428 - 发表时间:
2020-10-15 - 期刊:
- 影响因子:
- 作者:
Ralph Kirk;Mark Betson;Matilda Bingham;Paul Doyle;Rebecca Harvey;Anthony Huxley;John Moat;Thomas Pesnot;Michael Tait;Sebastian Hallworth;Gary Nelson - 通讯作者:
Gary Nelson
On the Chromatic Number of the Erdős-Rényi Orthogonal Polarity Graph
关于Erdős-Rényi正交极性图的色数
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0.7
- 作者:
Xing Peng;Michael Tait;Craig Timmons - 通讯作者:
Craig Timmons
Characterizing graphs of maximum principal ratio
最大主比率的特征图
- DOI:
10.13001/1081-3810.3200 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Michael Tait;Josh Tobin - 通讯作者:
Josh Tobin
Large monochromatic components in 3‐edge‐colored Steiner triple systems
三边彩色斯坦纳三重系统中的大型单色组件
- DOI:
10.1002/jcd.21707 - 发表时间:
2019 - 期刊:
- 影响因子:0.7
- 作者:
Louis DeBiasio;Michael Tait - 通讯作者:
Michael Tait
Degree Ramsey numbers for even cycles
- DOI:
10.1016/j.disc.2017.08.016 - 发表时间:
2016-10 - 期刊:
- 影响因子:0
- 作者:
Michael Tait - 通讯作者:
Michael Tait
Michael Tait的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Tait', 18)}}的其他基金
Algebraic Methods in Extremal Combinatorics
极值组合学中的代数方法
- 批准号:
1855530 - 财政年份:2019
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
Algebraic Methods in Extremal Combinatorics
极值组合学中的代数方法
- 批准号:
2011553 - 财政年份:2019
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
相似国自然基金
带奇点的extremal度量和toric流形上的extremal度量
- 批准号:10901160
- 批准年份:2009
- 资助金额:10.0 万元
- 项目类别:青年科学基金项目
相似海外基金
REU Site: Extremal Graph Theory and Dynamical Systems at RIT
REU 网站:RIT 的极值图论和动力系统
- 批准号:
2243938 - 财政年份:2023
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Graph Theory and Extremal Combinatorics
图论和极值组合学
- 批准号:
576024-2022 - 财政年份:2022
- 资助金额:
$ 21万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Extremal graph theory and Ramsey theory
极值图论和拉姆齐理论
- 批准号:
RGPIN-2016-05959 - 财政年份:2021
- 资助金额:
$ 21万 - 项目类别:
Discovery Grants Program - Individual
Extremal and Structural Aspects of Graph Minor Theory
图小论的极值和结构方面
- 批准号:
RGPIN-2017-05010 - 财政年份:2021
- 资助金额:
$ 21万 - 项目类别:
Discovery Grants Program - Individual
Extremal Graph Theory and Sums of Squares
极值图论和平方和
- 批准号:
2054404 - 财政年份:2021
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Extremal and Structural Aspects of Graph Minor Theory
图小论的极值和结构方面
- 批准号:
RGPIN-2017-05010 - 财政年份:2020
- 资助金额:
$ 21万 - 项目类别:
Discovery Grants Program - Individual
Extremal graph theory and Ramsey theory
极值图论和拉姆齐理论
- 批准号:
RGPIN-2016-05959 - 财政年份:2020
- 资助金额:
$ 21万 - 项目类别:
Discovery Grants Program - Individual
REU Site: Extremal Graph Theory and Dynamical Systems
REU 站点:极值图论和动力系统
- 批准号:
1950189 - 财政年份:2020
- 资助金额:
$ 21万 - 项目类别:
Standard Grant














{{item.name}}会员




