An Adaptive Closed-Loop Robotic Exoskeleton for Upper Extremity Motor Rehabilitation

用于上肢运动康复的自适应闭环机器人外骨骼

基本信息

  • 批准号:
    2245558
  • 负责人:
  • 金额:
    $ 46万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-15 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

Upper limb disability in individuals with stroke has devastating impacts on their quality of life over their lifespan. Each year, approximately 800,000 new stroke cases are reported in the United States alone. The restoration of arm extremity and hand dexterity is the highest priority among this population. In recent years, assistive robots and rehabilitation exoskeleton platforms showed promising results in motor training and recovery of upper limb function. However, the currently available robotic and exoskeleton platforms are not affordable and require technicians and large clinical space for operation. Additionally, the current robotic control algorithms are not efficient in persuading and engaging the patient into the loop of training. This award supports research to develop innovative adaptive algorithms embedded in an innovative and portable exoskeleton platform for arm extremity training in stroke patients. The project’s affordable, user-friendly robotic interface has the potential to relieve the burden on healthcare workers and accelerate the scalability of the overall system from doctor’s office-based training and testing to home-use devices to fulfill patients’ rehabilitation needs.This project's goals will be accomplished through three research thrusts: 1) developing a multimodal, wearable exoskeleton actuated using a haptic forcefield for upper extremity training; 2) leveraging the shared control theory to develop a closed-loop adaptive assistive strategy; and 3) validating the proposed rehabilitative platform on stroke patients with upper extremity impairment. In this project, a new, multimodal, and portable planar robotic training platform with a convenient user-centered design will be developed to overcome the translational barriers and assist the recovery of arm extremity in stroke patients. By leveraging the shared control theory and using a novel, adaptive, closed-loop Kalman filter algorithm, an adaptive and intention-driven rehabilitative algorithm will be developed. The patient’s multimodal biomarkers will be incorporated in the form of an adaptive, assist-as-needed, closed-loop algorithm to accelerate the recovery and remedy of the cortical plasticity. This research work will not only advance the fundamental understanding of the role of multimodal cortico-muscular activities in the planning and execution of arm extremity but also produce new adaptive rehabilitative algorithms to accelerate the motor recovery in the affected stroke population.This project is jointly funded by the Disabilities and Rehabilitation Engineering Program (DARE) and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
中风患者的上肢残疾对其一生的生活质量有着毁灭性的影响。每年,仅在美国就报告了大约80万例新的中风病例。在这一人群中,手臂肢体和手部灵巧的恢复是最优先考虑的。近年来,辅助机器人和康复外骨骼平台在运动训练和上肢功能恢复方面显示出良好的效果。然而,目前可用的机器人和外骨骼平台价格昂贵,需要技术人员和较大的临床空间进行操作。此外,目前的机器人控制算法在说服和吸引患者进入训练循环方面效率不高。该奖项支持研究开发创新的自适应算法,嵌入创新的便携式外骨骼平台,用于中风患者的手臂肢体训练。该项目价格合理,用户友好的机器人界面有可能减轻医疗工作者的负担,并加速整个系统的可扩展性,从医生办公室的培训和测试到家庭使用设备,以满足患者的康复需求。该项目的目标将通过三个研究重点来实现:1)开发一种使用触觉力场驱动的多模态可穿戴外骨骼,用于上肢训练;2)利用共享控制理论开发闭环自适应辅助策略;3)对脑卒中上肢功能障碍患者的康复平台进行验证。在本项目中,将开发一种新的、多模式的、便携式平面机器人训练平台,该平台具有方便的以用户为中心的设计,以克服平移障碍,帮助中风患者恢复手臂肢体。利用共享控制理论和一种新颖的、自适应的闭环卡尔曼滤波算法,将开发一种自适应的、意图驱动的康复算法。患者的多模态生物标志物将以自适应、按需辅助、闭环算法的形式结合起来,以加速皮质可塑性的恢复和治疗。这项研究工作不仅将促进对多模态皮质-肌肉活动在手臂末端计划和执行中的作用的基本理解,而且还将产生新的自适应康复算法,以加速中风患者的运动恢复。该项目由残疾和康复工程项目(DARE)和促进竞争性研究的既定项目(EPSCoR)共同资助。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Reza Abiri其他文献

A Comparative Study of Conventional and Tripolar EEG for High-Performance Reach-to-Grasp BCI Systems
高性能伸手可及 BCI 系统的传统脑电图和三极脑电图的比较研究
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ali Rabiee;Sima Ghafoori;Anna Cetera;Walter Besio;Reza Abiri
  • 通讯作者:
    Reza Abiri
Sampling representational plasticity of simple imagined movements across days enables long-term neuroprosthetic control
跨天对简单想象运动的采样代表性可塑性能够实现长期神经假体控制
  • DOI:
    10.1016/j.cell.2025.02.001
  • 发表时间:
    2025-03-06
  • 期刊:
  • 影响因子:
    42.500
  • 作者:
    Nikhilesh Natraj;Sarah Seko;Reza Abiri;Runfeng Miao;Hongyi Yan;Yasmin Graham;Adelyn Tu-Chan;Edward F. Chang;Karunesh Ganguly
  • 通讯作者:
    Karunesh Ganguly

Reza Abiri的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2413579
  • 财政年份:
    2024
  • 资助金额:
    $ 46万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2323727
  • 财政年份:
    2023
  • 资助金额:
    $ 46万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2323728
  • 财政年份:
    2023
  • 资助金额:
    $ 46万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2323731
  • 财政年份:
    2023
  • 资助金额:
    $ 46万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2323729
  • 财政年份:
    2023
  • 资助金额:
    $ 46万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2323730
  • 财政年份:
    2023
  • 资助金额:
    $ 46万
  • 项目类别:
    Standard Grant
CAREER: MINDWATCH: Multimodal Intelligent Noninvasive brain state Decoder for Wearable AdapTive Closed-loop arcHitectures
职业:MINDWATCH:用于可穿戴自适应闭环结构的多模态智能无创大脑状态解码器
  • 批准号:
    2226123
  • 财政年份:
    2022
  • 资助金额:
    $ 46万
  • 项目类别:
    Continuing Grant
CAREER: Scalable, Penetrating Multimodal Neural Interfaces for Adaptive Closed-Loop Neuromodulation
职业:用于自适应闭环神经调节的可扩展、穿透性多模态神经接口
  • 批准号:
    2145412
  • 财政年份:
    2022
  • 资助金额:
    $ 46万
  • 项目类别:
    Continuing Grant
Adaptive closed-loop brain-computer interface therapeutic intervention in laryngeal dystonia
喉肌张力障碍的自适应闭环脑机接口治疗干预
  • 批准号:
    10176816
  • 财政年份:
    2021
  • 资助金额:
    $ 46万
  • 项目类别:
Adaptive closed-loop brain-computer interface therapeutic intervention in laryngeal dystonia
喉肌张力障碍的自适应闭环脑机接口治疗干预
  • 批准号:
    10371128
  • 财政年份:
    2021
  • 资助金额:
    $ 46万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了