CAREER: Scalable, Penetrating Multimodal Neural Interfaces for Adaptive Closed-Loop Neuromodulation
职业:用于自适应闭环神经调节的可扩展、穿透性多模态神经接口
基本信息
- 批准号:2145412
- 负责人:
- 金额:$ 58.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-01 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
In the United States, anxiety disorders are the most prevalent neuropsychiatric illness, defined as an illness of the mind and nervous system, yet standard treatments for these disorders have failed to show a significant reduction in the prevalence or severity of illness. A major challenge is that anxiety disorders develop from disruptions in highly interconnected groups of brain areas, which are referred to as neural circuits, and the appropriate technologies to characterize these neural circuits are lacking. This CAREER project will develop and leverage a neural interface technology to characterize neural circuits impacted by anxiety disorders. Ultimately the work will increase understanding of neural mechanisms underscoring anxiety-related behavior and potentially lead to new treatment options. The research objectives in this proposal are integrated with an educational and outreach plan to increase visibility and training in neuroengineering. Specifically, the plan includes the following activities: establishing a neuroengineering research concentration; experiential learning and mentoring opportunities for women and underrepresented minorities; interactive and remote learning outreach activities; and multidisciplinary training for graduate and undergraduate students. The shortcomings of existing therapies for neuropsychiatric illnesses, such as anxiety, highlight the urgent need to better understand functional interactions in the affected neural circuits. The goal of this CAREER project is to develop a transformative multimodal neural interface fabrication process and design that will pave the way for establishing neural circuit mechanisms of anxiety-related behavior. Existing multimodal neural interfaces typically leverage manual assembly techniques that are not practically scalable and fail to reach brain areas beyond the superficial cortex. These shortcomings will be addressed by two foci. The Engineering Focus will develop microfabrication and microassembly processes for a neural interface design that can be easily optimized to different applications. The advantages of developing these processes include greater device yield, lower variation in fabricated devices, and design scalability to high channel counts. This work also distinguishes itself from the state-of-the-art in its holistic design that leverages a highly biocompatible material that easily integrates with the fabrication pipeline and is appropriate for multimodal functionality. Under the Biological Focus, the deep penetrating neural interface will be used to examine how approach-avoidance choice information is represented and communicated across relevant neural circuitry and implement an electrical neuromodulation paradigm to establish causal circuit mechanisms underlying aberrant changes in anxiety-related behavior. The knowledge gained through this work will provide a fundamentally new strategy to develop scalable multimodal neural interfaces and lay the foundation for neural circuit-level characterizations of any neurological condition – ultimately leading to new neuromodulatory interventions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在美国,焦虑症是最普遍的神经精神疾病,被定义为精神和神经系统的疾病,但这些疾病的标准治疗未能显着降低疾病的患病率或严重程度。一个主要的挑战是,焦虑症是由高度相互关联的大脑区域群(称为神经回路)的中断引起的,并且缺乏表征这些神经回路的适当技术。这个CAREER项目将开发和利用神经接口技术来表征受焦虑症影响的神经回路。最终,这项工作将增加对焦虑相关行为神经机制的理解,并可能导致新的治疗选择。本提案中的研究目标与教育和推广计划相结合,以提高神经工程的知名度和培训。具体而言,该计划包括以下活动:建立一个神经工程研究中心;为妇女和代表性不足的少数群体提供经验学习和辅导机会;互动和远程学习外联活动;以及为研究生和本科生提供多学科培训。神经精神疾病(如焦虑)现有疗法的缺点突出了更好地了解受影响神经回路中功能相互作用的迫切需要。这个CAREER项目的目标是开发一种变革性的多模态神经接口制造工艺和设计,为建立焦虑相关行为的神经回路机制铺平道路。现有的多模态神经接口通常利用手动组装技术,这些技术实际上不可扩展并且无法到达表层皮层以外的大脑区域。这些缺点将通过两个重点加以解决。工程焦点将开发微制造和微组装工艺,用于神经接口设计,可以很容易地针对不同的应用进行优化。开发这些工艺的优点包括更高的器件成品率、更低的制造器件变化以及设计可扩展性以实现高通道数。这项工作还在其整体设计方面与最先进的技术相区别,该设计利用了高度生物相容性的材料,易于与制造管道集成,并适用于多模式功能。在生物焦点下,深度穿透神经接口将被用来研究接近-回避选择信息是如何在相关的神经回路中表达和传达的,并实施电神经调节范式来建立焦虑相关行为异常变化的因果回路机制。通过这项工作获得的知识将为开发可扩展的多模式神经接口提供一个全新的策略,并为任何神经系统疾病的神经回路水平表征奠定基础-最终导致新的神经调节干预。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
“Mind-Reading” Machines
– 读心术 – 机器
- DOI:10.3389/frym.2022.771696
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Lu, Hung-Yun;Jeanpierre, Grace M.;Mitchell, Jaz;Santacruz, Samantha R.
- 通讯作者:Santacruz, Samantha R.
How Your Sense of Touch Can Change Your Brain
你的触觉如何改变你的大脑
- DOI:10.3389/frym.2022.772919
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Stealey, Hannah M.;Zhao, Yi;Chang, Yin-Jui;Santacruz, Samantha R.
- 通讯作者:Santacruz, Samantha R.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Samantha Santacruz其他文献
Rapid fluorescence lifetime imaging for live cells and retinal endogenous fluorophores
- DOI:
10.1016/j.bpj.2021.11.1357 - 发表时间:
2022-02-11 - 期刊:
- 影响因子:
- 作者:
Yuan-I Chen;Trung D. Nguyen;Yin-Jui Chang;Shih-Chu Liao;Manasa P. Sripati;Soonwoo Hong;Yu-An Kuo;Grady Rylander;Samantha Santacruz;Tim Yeh - 通讯作者:
Tim Yeh
Samantha Santacruz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
相似海外基金
Scalable indoor power harvesters using halide perovskites
使用卤化物钙钛矿的可扩展室内能量收集器
- 批准号:
MR/Y011686/1 - 财政年份:2025
- 资助金额:
$ 58.28万 - 项目类别:
Fellowship
DREAM Sentinels: Multiplexable and programmable cell-free ADAR-mediated RNA sensing platform (cfRADAR) for quick and scalable response to emergent viral threats
DREAM Sentinels:可复用且可编程的无细胞 ADAR 介导的 RNA 传感平台 (cfRADAR),可快速、可扩展地响应突发病毒威胁
- 批准号:
2319913 - 财政年份:2024
- 资助金额:
$ 58.28万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Nanomanufacturing of Perovskite-Analogue Nanocrystals via Continuous Flow Reactors
合作研究:通过连续流反应器进行钙钛矿类似物纳米晶体的可扩展纳米制造
- 批准号:
2315997 - 财政年份:2024
- 资助金额:
$ 58.28万 - 项目类别:
Standard Grant
RestoreDNA: Development of scalable eDNA-based solutions for biodiversity regulators and nature-related disclosure
RestoreDNA:为生物多样性监管机构和自然相关披露开发可扩展的基于 eDNA 的解决方案
- 批准号:
10086990 - 财政年份:2024
- 资助金额:
$ 58.28万 - 项目类别:
Collaborative R&D
Scalable and Automated Tuning of Spin-based Quantum Computer Architectures
基于自旋的量子计算机架构的可扩展和自动调整
- 批准号:
2887634 - 财政年份:2024
- 资助金额:
$ 58.28万 - 项目类别:
Studentship
FAST CAR-T: Faster, Adaptive and Scalable Technologies For CAR-T Manufacture
FAST CAR-T:更快、自适应和可扩展的 CAR-T 制造技术
- 批准号:
EP/Z532770/1 - 财政年份:2024
- 资助金额:
$ 58.28万 - 项目类别:
Research Grant
CAREER: Scalable Physics-Inspired Ising Computing for Combinatorial Optimizations
职业:用于组合优化的可扩展物理启发伊辛计算
- 批准号:
2340453 - 财政年份:2024
- 资助金额:
$ 58.28万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2412357 - 财政年份:2024
- 资助金额:
$ 58.28万 - 项目类别:
Standard Grant
SHF: Small: QED - A New Approach to Scalable Verification of Hardware Memory Consistency
SHF:小型:QED - 硬件内存一致性可扩展验证的新方法
- 批准号:
2332891 - 财政年份:2024
- 资助金额:
$ 58.28万 - 项目类别:
Standard Grant
SBIR Phase I: Scalable Magnetically-Geared Modular Space Manipulator for In-space Manufacturing and Active Debris Remediation Missions
SBIR 第一阶段:用于太空制造和主动碎片修复任务的可扩展磁力齿轮模块化空间操纵器
- 批准号:
2335583 - 财政年份:2024
- 资助金额:
$ 58.28万 - 项目类别:
Standard Grant