CRII: SaTC: Local Differential Privacy under Correlation

CRII:SaTC:相关下的本地差分隐私

基本信息

  • 批准号:
    2245689
  • 负责人:
  • 金额:
    $ 17.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-04-01 至 2025-03-31
  • 项目状态:
    未结题

项目摘要

As data has become the fuel that drives business growth, an increasing number of service providers collect large volumes of data from users to gain insights for better business decision-making. Such data may contain or reveal sensitive personal information, and disclosing such information raises significant privacy concerns among the general public. Various Local Differential Private (LDP) data analysis techniques have been proposed to allow a data collector to gain helpful information from the data while ensuring users' privacy. Still, these methods exhibit an inherent trade-off between individual data privacy and data utility, i.e., strong data privacy for individual data contributors comes at the cost of reduced data utility for the data collector, which has been hindering their broad adoption. This project's novelties lie in exploiting the correlation that commonly exists in multi-attribute data, e.g., a person's age and salary, and new correlated random perturbation techniques to develop effective LDP techniques with much-improved privacy and utility tradeoff. The project's broader significance and importance include new tools for service providers to improve how they collect and utilize user data to drive their business decisions and growth while ensuring strong privacy guarantees to individual users as well as privacy-preserving data analysis techniques in various web, mobile, and IoT-based applications and services. This project develops novel LDP techniques to significantly improve the privacy and utility tradeoff by exploiting the correlation in multi-attribute data and the correlation that can be introduced into different users' random perturbations. The project will: (1) develop novel LDP techniques for correlated multi-attribute data via sequential random perturbation for improving data utility without sacrificing privacy guarantee, and (2) design novel LDP techniques with improved privacy and utility tradeoffs by exploiting correlated random perturbation among randomly formed groups of data contributors. The findings from this project will enrich the scientific knowledge of privacy-preserving data analysis and privacy-enhancing technologies. Insights gained from and outputs of the project will be made publicly shared through online tutorials, talks, publications, and software toolkits. The project will integrate research outputs in curriculum development, and will contribute broadly through undergraduate and graduate mentoring, and outreach to K-12 and underrepresented students.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着数据成为推动业务增长的燃料,越来越多的服务提供商从用户那里收集大量数据,以获得洞察力,以便更好地制定业务决策。此类数据可能包含或泄露敏感的个人信息,披露此类信息会引起公众对隐私的严重担忧。已经提出了各种本地差异专用(LDP)数据分析技术,以允许数据收集器从数据中获得有用的信息,同时确保用户的隐私。尽管如此,这些方法显示了个人数据隐私和数据效用之间的内在权衡,即个人数据贡献者的强烈数据隐私是以减少数据收集者的数据效用为代价的,这一直阻碍了它们的广泛采用。该项目的创新之处在于利用了多属性数据中普遍存在的相关性,例如一个人的年龄和工资,以及新的相关随机扰动技术来开发有效的LDP技术,并大大改善了隐私和效用之间的权衡。该项目的更广泛的意义和重要性包括为服务提供商提供新的工具,以改进他们收集和使用用户数据的方式,以推动他们的业务决策和增长,同时确保为个人用户提供强有力的隐私保障,以及各种基于网络、移动和物联网的应用和服务中的隐私保护数据分析技术。该项目开发了新的LDP技术,通过利用多属性数据之间的相关性以及可以引入到不同用户的随机扰动中的相关性来显著改善隐私和效用之间的权衡。该项目将:(1)开发新的LDP技术,通过序列随机扰动来关联多属性数据,以在不牺牲隐私保障的情况下提高数据效用;(2)通过利用随机形成的数据贡献者组之间的相关随机扰动来设计新的LDP技术,以改善隐私和效用之间的权衡。该项目的发现将丰富隐私保护数据分析和隐私增强技术的科学知识。从该项目中获得的见解和成果将通过在线教程、讲座、出版物和软件工具包公开分享。该项目将把研究成果整合到课程开发中,并将通过本科生和研究生指导,以及向K-12和代表性不足的学生推广,做出广泛贡献。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yidan Hu其他文献

Analysis on the Distribution of Critical Current Density in a Single ReBCO Annular Plates
单块ReBCO环形板的临界电流密度分布分析
Tepidibacillus marianensis sp. nov., a novel heterotrophic iron-reducing bacterium isolated from Mariana Trench sediment.
玛丽亚温带芽孢杆菌 (Tepidibacillus marianensis)
An Optimized Wideband Ridge Turnstile Junction with Compact Size
一种优化的紧凑型宽带脊形闸机连接器
Research of ICRH Based on Simulation With VSim Programming
基于VSim编程仿真的ICRH研究
  • DOI:
    10.1109/tasc.2019.2891966
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Menghan Wang;Yinshun Wang;Qiuliang Wang;Chunyan Li;Xing Li;Mingchuang Liu;Yidan Hu;Hao Chen;C. Peng
  • 通讯作者:
    C. Peng
The emdmsEFABGH/em operon encodes an essential and modular electron transfer pathway for extracellular iodate reduction by emShewanella oneidensis/em MR-1
emdmsEFABGH/em 操纵子编码了一种必需的模块化电子转移途径,用于由 emShewanella oneidensis/em MR-1 进行细胞外碘酸盐还原。
  • DOI:
    10.1128/spectrum.00512-24
  • 发表时间:
    2024-06-25
  • 期刊:
  • 影响因子:
    3.800
  • 作者:
    Lingyu Hou;Beiling Zheng;Zhou Jiang;Yidan Hu;Liang Shi;Yiran Dong;Yongguang Jiang
  • 通讯作者:
    Yongguang Jiang

Yidan Hu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yidan Hu', 18)}}的其他基金

Travel: NSF Student Travel Grant for 2023 Privacy Enhancing Technologies Symposium (PETS)
旅行:2023 年隐私增强技术研讨会 (PETS) 的 NSF 学生旅行补助金
  • 批准号:
    2330965
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant

相似海外基金

CRII: SaTC: Automated Knowledge Representation for IoT Cybersecurity Regulations
CRII:SaTC:物联网网络安全法规的自动化知识表示
  • 批准号:
    2348147
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CRII: SaTC: Privacy vs. Accountability--Usable Deniability and Non-Repudiation for Encrypted Messaging Systems
CRII:SaTC:隐私与责任——加密消息系统的可用否认性和不可否认性
  • 批准号:
    2348181
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
  • 批准号:
    2330940
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Evolving I/O Protocols for Confidential Computing
CRII:SaTC:用于机密计算的不断发展的 I/O 协议
  • 批准号:
    2348130
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
SaTC: CORE: Small: An evaluation framework and methodology to streamline Hardware Performance Counters as the next-generation malware detection system
SaTC:核心:小型:简化硬件性能计数器作为下一代恶意软件检测系统的评估框架和方法
  • 批准号:
    2327427
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317232
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Enforcing Expressive Security Policies using Trusted Execution Environments
CRII:SaTC:使用可信执行环境执行表达性安全策略
  • 批准号:
    2348304
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338301
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Continuing Grant
CRII: SaTC: The Right to be Forgotten in Follow-ups of Machine Learning: When Privacy Meets Explanation and Efficiency
CRII:SaTC:机器学习后续中被遗忘的权利:当隐私遇到解释和效率时
  • 批准号:
    2348177
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了