Liouville Quantum Gravity and Its Applications
刘维尔量子引力及其应用
基本信息
- 批准号:2245832
- 负责人:
- 金额:$ 33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project will study Liouville quantum gravity (LQG), a theory of random surfaces. These random surfaces arise in various areas of theoretical physics. In bosonic string theory, they can be used to model the surfaces swept out by a string moving through space. They can also be viewed as models of gravity in two dimensions. LQG surfaces have many interesting and surprising geometric properties and are connected to a variety of other mathematical objects, including various types of random curves, random permutations, and random graphs. This project will address some of the most important open problems in the subject. The awardee will also engage in outreach, mentorship, and dissemination activities, including mentoring undergraduate and graduate participation in the research, writing expository articles, organizing conferences, and giving talks and mini-courses at conferences, seminars, and summer schools. One goal of the project is to build a better understanding of distances between points in LQG surfaces. Another goal is to understand LQG surfaces in the so-called supercritical phase (corresponding to central charge between 1 and 25), which is much less well understood than the subcritical phase, but which is expected to be more interesting from a string theory perspective. The awardee also plans to study the extent to which one can make sense of the solutions to partial differential equations on LQG surfaces, and to further explore the applications of LQG to combinatorial objects, including planar maps, permutations, and meanders.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个项目将研究刘维尔量子引力(LQG),一个随机表面的理论。这些随机表面出现在理论物理的各个领域。在玻色弦理论中,它们可以用来模拟在空间中运动的弦所扫过的表面。它们也可以被看作是二维重力模型。LQG曲面具有许多有趣和令人惊讶的几何性质,并与各种其他数学对象相关联,包括各种类型的随机曲线,随机排列和随机图。这个项目将解决一些最重要的开放问题的主题。获奖者还将参与外展,导师和传播活动,包括指导本科生和研究生参与研究,撰写临时文章,组织会议,并在会议,研讨会和暑期学校进行演讲和小型课程。该项目的一个目标是更好地理解LQG曲面中点之间的距离。另一个目标是理解所谓的超临界相(对应于中心电荷在1到25之间)的LQG表面,这比亚临界相要少得多,但从弦理论的角度来看,这将更有趣。获奖者还计划研究LQG曲面上的偏微分方程解的意义,并进一步探索LQG在组合对象(包括平面地图、排列和曲折)中的应用。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ewain Gwynne其他文献
Loewner evolution driven by complex Brownian motion
由复杂布朗运动驱动的勒纳演化
- DOI:
10.1214/23-aop1639 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Ewain Gwynne;Joshua Pfeffer - 通讯作者:
Joshua Pfeffer
Connectivity properties of the adjacency graph of SLE$_kappa$ bubbles for $kappa in (4,8)$
SLE$_kappa$ 邻接图的连通性对于 $kappa in (4,8)$ 来说是气泡
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Ewain Gwynne;Joshua Pfeffer - 通讯作者:
Joshua Pfeffer
Power-law bounds for increasing subsequences in Brownian separable permutons and homogeneous sets in Brownian cographons
布朗可分排列中增加子序列和布朗象数齐次集的幂律界
- DOI:
10.1016/j.aim.2023.109480 - 发表时间:
2023 - 期刊:
- 影响因子:1.7
- 作者:
J. Borga;W. D. Silva;Ewain Gwynne - 通讯作者:
Ewain Gwynne
Confluence of geodesics in Liouville quantum gravity
刘维尔量子引力中测地线的汇合
- DOI:
10.1007/978-3-319-30976-7_10 - 发表时间:
2020 - 期刊:
- 影响因子:5
- 作者:
Ewain Gwynne;Jason Miller - 通讯作者:
Jason Miller
Permutons, meanders, and SLE-decorated Liouville quantum gravity
排列、曲折和 SLE 修饰的刘维尔量子引力
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
J. Borga;Ewain Gwynne;Xin Sun - 通讯作者:
Xin Sun
Ewain Gwynne的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Simulation and certification of the ground state of many-body systems on quantum simulators
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
- 批准号:11875153
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Non-perturbative Conformal Field Theory in Quantum Gravity and the Laboratory (Exact CFT)
量子引力中的非微扰共形场论和实验室(精确 CFT)
- 批准号:
EP/Z000106/1 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Research Grant
Reaching new frontiers of quantum fields and gravity through deformations
通过变形达到量子场和引力的新前沿
- 批准号:
DP240101409 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Discovery Projects
Clocks and singularities in quantum gravity and quantum cosmology
量子引力和量子宇宙学中的时钟和奇点
- 批准号:
2907441 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Studentship
NX Micro COTS laser system for quantum gravity gradiometry
用于量子重力梯度测量的 NX Micro COTS 激光系统
- 批准号:
10073639 - 财政年份:2023
- 资助金额:
$ 33万 - 项目类别:
Small Business Research Initiative
Non-perturbative aspects of three-dimensional quantum gravity
三维量子引力的非微扰方面
- 批准号:
2882187 - 财政年份:2023
- 资助金额:
$ 33万 - 项目类别:
Studentship
Dualities in Quantum Field theories and Gravity
量子场论和引力的对偶性
- 批准号:
2894438 - 财政年份:2023
- 资助金额:
$ 33万 - 项目类别:
Studentship
Research in Particle Theory, Cosmology, and Quantum Gravity
粒子论、宇宙学和量子引力研究
- 批准号:
2310429 - 财政年份:2023
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
Quantum gravity phenomenology based on S-matrix program
基于S矩阵程序的量子引力现象学
- 批准号:
22KF0253 - 财政年份:2023
- 资助金额:
$ 33万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Quantum gravity theory opened up by new physics that can be experimentally verified
量子引力理论由可通过实验验证的新物理学开辟
- 批准号:
23K13108 - 财政年份:2023
- 资助金额:
$ 33万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Theoretical verification of the primordial universe based on theories of quantum gravity.
基于量子引力理论的原始宇宙理论验证。
- 批准号:
23K13100 - 财政年份:2023
- 资助金额:
$ 33万 - 项目类别:
Grant-in-Aid for Early-Career Scientists