CRII: OAC: Building Explainable Computer Architecture with Simulation and Visualization Techniques

CRII:OAC:利用模拟和可视化技术构建可解释的计算机架构

基本信息

  • 批准号:
    2246035
  • 负责人:
  • 金额:
    $ 17.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-05-01 至 2025-04-30
  • 项目状态:
    未结题

项目摘要

Computing systems are getting more and more complex to achieve high performance. On the one hand, different devices are combined in one heterogeneous platform so that specialized applications (e.g., artificial intelligence) can execute more efficiently. On the other hand, the scale of devices and systems is getting much larger. The heterogeneity and the massive scale of computing systems make it challenging for researchers to understand, interpret, and explain the behavior of each hardware component that participates in application execution. The lack of explainability of existing computer architectures can potentially lead to functional bugs, performance drawbacks, security vulnerabilities, and reliability problems. This project advocates the importance of building Explainable Computer Architecture by enhancing computer architecture simulators and developing visualization tools that help analyze performance issues. The research outcome of this project reduces the barriers for students, especially students from underrepresented groups, to participate in computer architecture design, development, and research.This project initiates the Explainable Computer Architecture research direction, which can accelerate innovation in computer architecture research and design. This project contributes to a universal data format and instrumentation library for computer architecture simulators to collect execution traces for visualization purposes. Additionally, this project develops a novel data visualization tool for network-on-chips system performance analysis, facilitating the identification of performance issues in large-scale and highly-coupled computing systems. Moreover, this project delivers an educational game, based on the simulator and the visualization tool developed in this project, to support K-12 computer science education. Finally, using a research-through-design approach, the experiences learned from this project guide the community to design future ``easier-to-explain'' computer architectures.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
为了获得高性能,计算系统变得越来越复杂。一方面,不同的设备被组合在一个不同的平台中,以便专门的应用程序(例如,人工智能)可以更高效地执行。另一方面,设备和系统的规模越来越大。计算系统的异构性和大规模使得研究人员很难理解、解释和解释参与应用执行的每个硬件组件的行为。现有计算机体系结构缺乏可解释性可能会导致功能错误、性能缺陷、安全漏洞和可靠性问题。该项目通过增强计算机体系结构模拟器和开发有助于分析性能问题的可视化工具,倡导构建可解释的计算机体系结构的重要性。该项目的研究成果降低了学生,特别是代表不足群体的学生参与计算机体系结构设计、开发和研究的门槛,开创了可解释的计算机体系结构研究方向,可以促进计算机体系结构研究和设计的创新。该项目为计算机体系结构模拟器提供了一个通用数据格式和仪表库,用于收集执行轨迹以实现可视化。此外,该项目还开发了一种用于片上网络系统性能分析的新型数据可视化工具,有助于识别大规模和高耦合计算系统中的性能问题。此外,该项目还提供了一个基于该项目开发的模拟器和可视化工具的教育游戏,以支持K-12计算机科学教育。最后,使用通过设计研究的方法,从这个项目中学到的经验指导社区设计未来的“更容易解释”的计算机体系结构。这个奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Visual Exploratory Analysis for Designing Large-Scale Network-on-Chip Architectures: A Domain Expert-Led Design Study
设计大规模片上网络架构的可视化探索性分析:领域专家主导的设计研究
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yifan Sun其他文献

Tailoring the surface properties of Ni/SiO2 catalyst with sulfuric acid for enhancing the catalytic efficiency for steam reforming of guaiacol
用硫酸调整Ni/SiO2催化剂的表面性质以提高愈创木酚蒸汽重整的催化效率
  • DOI:
    10.1016/j.renene.2020.04.012
  • 发表时间:
    2020-08
  • 期刊:
  • 影响因子:
    8.7
  • 作者:
    Zhanming Zhang;Lijun Zhang;Fang Liu;Yifan Sun;Yuewen Shao;Kai Sun;Shu Zhang;Qing Liu;Guangzhi Hu;Xun Hu
  • 通讯作者:
    Xun Hu
Denoising of Fourier domain quantum optical coherence tomography spectrums based on deep-learning methods
基于深度学习方法的傅里叶域量子光学相干层析成像光谱去噪
  • DOI:
    10.1364/optcon.454502
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tingting Liu;Yifan Sun;Xiangdong Zhang
  • 通讯作者:
    Xiangdong Zhang
Monocyte distribution width as a screening tool for COVID‐19: A systematic review and meta‐analysis
单核细胞分布宽度作为 COVID-19 筛查工具:系统评价和荟萃分析
Operating Region and Boundary Control of Modular Multilevel Converter Station Under Unbalanced Grid Conditions
电网不平衡条件下模块化多电平换流站运行区域及边界控制
  • DOI:
    10.1109/tpwrd.2019.2935808
  • 发表时间:
    2020-06
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Quanrui Hao;Bowei Li;Yifan Sun;Linlin Wu;Shuying Wang
  • 通讯作者:
    Shuying Wang
Multimode resonance transition to collapsed snaking in normal dispersive Kerr cavities: bright versus dark solitons.
正常色散克尔腔中多模共振过渡到塌陷蛇行:亮孤子与暗孤子。
  • DOI:
    10.1364/ol.499907
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Yifan Sun;S. Wabnitz;P. Parra
  • 通讯作者:
    P. Parra

Yifan Sun的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yifan Sun', 18)}}的其他基金

Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
  • 批准号:
    2402804
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CCRI: Planning-C: Enabling Computer Architecture Simulation as a Service
合作研究:CCRI:Planning-C:实现计算机架构仿真即服务
  • 批准号:
    2234400
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant

相似国自然基金

Z8-12:OH和Z8-14:OAc分别维持梨小食心虫和李小食心虫性诱剂特异性的分子基础
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    35 万元
  • 项目类别:
    地区科学基金项目
亚硝酰钌配合物[Ru(OAc)(2mqn)2NO]的光异构反应机理研究
  • 批准号:
    21603131
  • 批准年份:
    2016
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目
机械化学条件下Mn(OAc)3促进的自由基串联反应研究
  • 批准号:
    21242013
  • 批准年份:
    2012
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

CRII: OAC: A Compressor-Assisted Collective Communication Framework for GPU-Based Large-Scale Deep Learning
CRII:OAC:基于 GPU 的大规模深度学习的压缩器辅助集体通信框架
  • 批准号:
    2348465
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
  • 批准号:
    2403312
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC CORE: Federated-Learning-Driven Traffic Event Management for Intelligent Transportation Systems
合作研究:OAC CORE:智能交通系统的联邦学习驱动的交通事件管理
  • 批准号:
    2414474
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
OAC Core: Cost-Adaptive Monitoring and Real-Time Tuning at Function-Level
OAC核心:功能级成本自适应监控和实时调优
  • 批准号:
    2402542
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
OAC Core: OAC Core Projects: GPU Geometric Data Processing
OAC 核心:OAC 核心项目:GPU 几何数据处理
  • 批准号:
    2403239
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CRII: OAC: Dynamically Adaptive Unstructured Mesh Technologies for High-Order Multiscale Fluid Dynamics Simulations
CRII:OAC:用于高阶多尺度流体动力学仿真的动态自适应非结构​​化网格技术
  • 批准号:
    2348394
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CRII: OAC: A Multi-fidelity Computational Framework for Discovering Governing Equations Under Uncertainty
CRII:OAC:用于发现不确定性下控制方程的多保真度计算框架
  • 批准号:
    2348495
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Large-Scale Spatial Machine Learning for 3D Surface Topology in Hydrological Applications
合作研究:OAC 核心:水文应用中 3D 表面拓扑的大规模空间机器学习
  • 批准号:
    2414185
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Learning AI Surrogate of Large-Scale Spatiotemporal Simulations for Coastal Circulation
合作研究:OAC Core:学习沿海环流大规模时空模拟的人工智能替代品
  • 批准号:
    2402947
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
  • 批准号:
    2403313
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了