CRII: CIF: Information Theoretic Measures for Fairness-aware Supervised Learning

CRII:CIF:公平意识监督学习的信息论措施

基本信息

  • 批准号:
    2246058
  • 负责人:
  • 金额:
    $ 17.49万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-06-01 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

Despite the growing success of Machine Learning (ML) systems in accomplishing complex tasks, their increasing use in making or aiding consequential decisions that affect people’s lives (e.g., university admission, healthcare, predictive policing) raises concerns about potential discriminatory practices. Unfair outcomes in ML systems result from historical biases in the data used to train them. A learning algorithm designed merely to minimize prediction error may inherit or even exacerbate such biases; particularly when observed attributes of individuals, critical for generating accurate decisions, are biased by their group identities (e.g., race or gender) due to existing social and cultural inequalities. Understanding and measuring these biases-- at the data level-- is a challenging yet crucial problem, leading to constructive insights and methodologies for debiasing the data and adapting the learning system to minimize discrimination, as well as raising the need for policy changes and infrastructural development. This project aims to establish a comprehensive framework for precisely quantifying the marginal impact of individuals’ attributes on accuracy and unfairness of decisions, using tools from information and game theories and causal inference, along with legal and social science definitions of fairness. This multi-disciplinary effort will provide guidelines and design insights for practitioners in the field of fair data-driven automated systems and inform the public debate on social consequences of artificial intelligence.The majority of previous work formulates the algorithmic fairness problem from the viewpoint of the learning algorithm by enforcing a statistical or counterfactual fairness constraint on the learner’s outcome and designing a learner that meets it. As the considered fairness problem originates from biased data, merely adding constraints to the prediction task might not provide a holistic view of its fundamental limitations. This project looks at the fairness problem through different lens, where instead of asking “for a given learner, how can we achieve fairness”?, it asks “for a given dataset, what are the inherent tradeoffs in the data, and based on these, what is the best learner we can design”?. In supervised learning models, the challenge in the proposed problem lies in the complex structures of correlation/causation among individuals’ attributes (covariates), their group identities (protected features), the target variable (label), and the prediction outcome (decision). In analyzing the dataset, the marginal impacts of covariates on the accuracy and discrimination of decisions are quantified from the data, via carefully designed measures accounting for the complex correlation/causation structures among variables and the inherent tension between accuracy and fairness objectives. Subsequently, methods to exploit the quantified impacts in guiding downstream ML systems to improve their achievable accuracy-fairness tradeoff will be investigated. Importantly, the proposed framework provides explainable solutions, where the inclusion of certain attributes in the learning system is explained by their importance for accurate as well as fair decisions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
尽管机器学习(ML)系统在完成复杂任务方面取得了越来越大的成功,但它们越来越多地用于做出或帮助影响人们生活的重大决策(例如,大学入学、医疗保健、预测性警务)引起了对潜在歧视做法的关切。ML系统中的不公平结果是由用于训练它们的数据中的历史偏见造成的。仅仅为了最小化预测误差而设计的学习算法可能会继承甚至加剧这种偏差;特别是当观察到的个体属性(对于生成准确决策至关重要)受到其群体身份(例如,种族或性别),因为现有的社会和文化不平等。在数据一级理解和衡量这些偏见是一个具有挑战性但又至关重要的问题,有助于提出建设性的见解和方法,消除数据偏见,调整学习系统,以最大限度地减少歧视,并提高政策变革和基础设施发展的必要性。该项目旨在建立一个综合框架,利用信息和博弈论以及因果推理的工具,以及法律和社会科学对公平的定义,精确量化个人属性对决策准确性和不公平性的边际影响。这种多学科的努力将为公平数据领域的从业者提供指导方针和设计见解-驱动的自动化系统,并告知公众辩论的社会后果的人工智能。以前的大部分工作制定了算法的公平性问题,从学习算法的观点,通过对学习者的结果强制执行统计或反事实的公平性约束,并设计一个学习者,满足它。由于所考虑的公平性问题源于有偏见的数据,仅仅向预测任务添加约束可能无法全面了解其基本局限性。这个项目通过不同的透镜来看待公平问题,而不是问"对于给定的学习者,我们如何才能实现公平"?,它问“对于给定的数据集,数据中固有的权衡是什么,基于这些,我们可以设计的最佳学习器是什么?”。在监督学习模型中,所提出问题的挑战在于个体属性(协变量)、群体身份(受保护特征)、目标变量(标签)和预测结果(决策)之间复杂的相关性/因果关系结构。在分析数据集时,协变量对决策准确性和区分度的边际影响通过精心设计的措施从数据中量化,这些措施考虑了变量之间复杂的相关性/因果关系结构以及准确性和公平性目标之间的内在紧张关系。随后,将研究利用量化影响指导下游ML系统以提高其可实现的准确性-公平性权衡的方法。重要的是,拟议的框架提供了可解释的解决方案,在学习系统中包含的某些属性是由它们对准确和公平决策的重要性来解释的。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mohamed Nafea其他文献

Mohamed Nafea的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Wolbachia的cif因子与天麻蚜蝇dsx基因协同调控生殖不育的机制研究
  • 批准号:
    JCZRQN202501187
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
SHR和CIF协同调控植物根系凯氏带形成的机制
  • 批准号:
    31900169
  • 批准年份:
    2019
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CIF: Small: Shared Information: Theory and Applications
CIF:小:共享信息:理论与应用
  • 批准号:
    2310203
  • 财政年份:
    2023
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Standard Grant
Travel: CIF: Student Travel Support for the 2023 IEEE International Symposium on Information Theory
旅行:CIF:2023 年 IEEE 国际信息论研讨会的学生旅行支持
  • 批准号:
    2310925
  • 财政年份:
    2023
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: A New Paradigm for Distributed Information Processing, Simulation and Inference in Networks: The Promise of Law of Small Numbers
合作研究:CIF:小:网络中分布式信息处理、模拟和推理的新范式:小数定律的承诺
  • 批准号:
    2241057
  • 财政年份:
    2022
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Standard Grant
CIF: Small: Information-theoretic privacy and security for personalized distributed learning
CIF:小型:个性化分布式学习的信息论隐私和安全
  • 批准号:
    2139304
  • 财政年份:
    2022
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: A New Paradigm for Distributed Information Processing, Simulation and Inference in Networks: The Promise of Law of Small Numbers
合作研究:CIF:小:网络中分布式信息处理、模拟和推理的新范式:小数定律的承诺
  • 批准号:
    2132815
  • 财政年份:
    2021
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: A New Paradigm for Distributed Information Processing, Simulation and Inference in Networks: The Promise of Law of Small Numbers
合作研究:CIF:小:网络中分布式信息处理、模拟和推理的新范式:小数定律的承诺
  • 批准号:
    2132843
  • 财政年份:
    2021
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Medium: An Information-Theoretic Foundation for Adaptive Bidding in First-Price Auctions
合作研究:CIF:媒介:一价拍卖中自适应出价的信息理论基础
  • 批准号:
    2106467
  • 财政年份:
    2021
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Medium: An Information-Theoretic Foundation for Adaptive Bidding in First-Price Auctions
合作研究:CIF:媒介:一价拍卖中自适应出价的信息理论基础
  • 批准号:
    2106508
  • 财政年份:
    2021
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Standard Grant
CISE-MSI: DP: CIF: A Sovereign Network System for Environmental Monitoring, Data and Information Exchange, and Collaboration among Tribal Colleges and Universities
CISE-MSI:DP:CIF:用于环境监测、数据和信息交换以及部落学院和大学之间合作的主权网络系统
  • 批准号:
    2131301
  • 财政年份:
    2021
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Interagency Agreement
CIF: Student Travel Grant for the 2020 IEEE International Symposium on Information Theory (ISIT)
CIF:2020 年 IEEE 国际信息论研讨会 (ISIT) 学生旅费补助金
  • 批准号:
    1954152
  • 财政年份:
    2020
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了