GOALI: Nanofluidic Physics of CO2 Utilization and Storage in Shale and Tight Oil Reservoirs
目标:页岩和致密油储层二氧化碳利用和储存的纳流体物理
基本信息
- 批准号:2246274
- 负责人:
- 金额:$ 55.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-15 至 2025-12-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The petroleum industry in the US faces two pressing challenges. First, it needs to sequester CO2, but current technologies and cost structures are too expensive. Second, oil recovery is frustratingly low in its tight oil reservoirs dominated by nanoscale pores. A promising approach to addressing these challenges is to inject CO2 into tight oil reservoirs to enhance oil recovery and simultaneously sequester CO2. However, optimizing this operation is difficult because of the limited knowledge of nanoscale physics governing oil and CO2 transport and the uncertainties it brings to reservoir-scale modeling and prediction. The principal aim of this project is to understand such nanoscale flow physics and its impact on enhanced oil recovery and CO2 storage. This project will help engineers optimize CO2 utilization and sequestration operations in tight oil reservoirs with greater confidence, benefiting the petroleum industry and society. Insights from this study will also help understand similar transport phenomena of nanoconfined mixtures in areas such as water purification and mineral extraction, thus benefiting other industries. The project will encompass significant educational and outreach activities to underrepresented students, K12 students, and petroleum companies.This project aims to investigate the transport of oil and CO2 in tight oil reservoirs. The overarching hypothesis is that CO2 at oil-wall interfaces and its gradient along the pore wall modulate oil-CO2 transport in nanopores and ultimately impact oil recovery and CO2 storage at the reservoir scale. This hypothesis will be tested by integrating bench-scale experiments using membranes and real cores, molecular and continuum simulations, and theories. The specific aims are to investigate CO2-mediated oil flow in nanopores and elucidate the diffusion-driven exchange between nanopore-trapped oil and CO2 in fractures. This research will advance nanofluidic physics, including interlayer slippage, diffusio-osmosis due to CO2 gradient, and modulation of transport by surface diffusion. Furthermore, an industry-standard reservoir simulator will be enhanced with nanofluidic physics and used to delineate the impact of such physics on oil recovery and CO2 storage at the reservoir scale, which will help rapidly transfer fundamental knowledge gained in this project to practice. Students, especially those from underrepresented groups, will be recruited to join this project. Outreach programs at the PIs’ institutions will be leveraged to expose K12 students to fluid dynamics research and its contributions to society. Newsletters on pore-scale research in CO2 utilization and storage will be developed and distributed to researchers in the petroleum industry.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
美国石油行业面临两个紧迫的挑战。首先,它需要隔离二氧化碳,但是当前的技术和成本结构太贵了。其次,在其紧密的油基水库中以纳米级毛孔为主导的油库令人沮丧。应对这些挑战的一种有希望的方法是将二氧化碳注入紧密的储油液中,以增强石油回收率并简单地隔离二氧化碳。但是,由于对石油和二氧化碳运输的纳米级物理学知识有限,并且它带来了储层规模的建模和预测,因此很难优化此操作。该项目的主要目的是了解这种纳米级流体物理及其对增强石油回收和二氧化碳存储的影响。该项目将帮助工程师优化二氧化碳的利用率和固换操作,以更大的信心使石油行业和社会受益。这项研究的见解还将有助于了解诸如净化水和矿物质提取区域的纳米构成混合物的类似运输现象,从而使其他行业受益。该项目将涵盖代表性不足的学生,K12学生和石油公司的重要教育和外展活动。该项目旨在调查紧密的油藏中石油和二氧化碳的运输。总体假设是,石油壁界面的二氧化碳及其沿孔壁调节纳米孔的石油-CO2运输的梯度,并最终会影响油库中的石油回收率和二氧化碳量表。该假设将通过使用膜和真实核心,分子和持续模拟以及理论整合实验来检验。具体目的是研究纳米孔中的CO2介导的油流,并阐明纳米捕获的油与骨折中二氧化碳之间的扩散驱动的交换。这项研究将推进纳米流体物理学,包括层间滑移,二氧化碳梯度引起的扩散 - 渗透以及通过表面扩散调节转运。此外,通过纳米荧光物理学将增强行业标准的储层模拟器,并用来描述此类物理学对油回收和二氧化碳存储的影响,这将有助于在该项目中迅速获得基本知识,以实践。学生,尤其是来自代表性不足的团体的学生,将招募加入该项目。 PIS机构的外展计划将被利用,以使K12学生接触流动的动态研究及其对社会的贡献。关于CO2利用和存储孔规模研究的新闻通讯将开发并分发给石油行业的研究人员。该奖项反映了NSF的法定任务,并通过使用基金会的知识分子优点和更广泛的影响评估标准来通过评估来通过评估来获得珍贵的支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Molecular insights of condensate trapping mechanism in shale oil reservoirs and its implications on lean gas enhanced oil recovery
- DOI:10.1016/j.cej.2023.146366
- 发表时间:2023-09
- 期刊:
- 影响因子:15.1
- 作者:Shihao Wang;Hongwei Zhang;Bikai Jin;Rui Qiao;Xianhuan Wen
- 通讯作者:Shihao Wang;Hongwei Zhang;Bikai Jin;Rui Qiao;Xianhuan Wen
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Erdal Ozkan其他文献
A new pressure-rate deconvolution algorithm based on Laplace transformation and its application to measured well responses
- DOI:
10.1016/j.petrol.2017.06.060 - 发表时间:
2017-08-01 - 期刊:
- 影响因子:
- 作者:
Mahmood Ahmadi;Hossein Sartipizadeh;Erdal Ozkan - 通讯作者:
Erdal Ozkan
Erdal Ozkan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
多孔介质内沥青质动态沉积机制与纳米流体抑制作用研究
- 批准号:42307240
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
离心场强化纳米流体吸收CO2的传质机理研究
- 批准号:22308100
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
阻燃纳米类流体的设计及对聚碳酸酯薄壁制品阻燃、流动性及力学性能的同步强化机制研究
- 批准号:22305181
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
深层页岩有机纳米孔隙壁面形变对流体吸附和扩散的影响机理研究
- 批准号:52306096
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
织构导流低温纳米流体润滑的钛合金变向超声振动高性能切削基础研究
- 批准号:52375446
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
2023 Physics and Chemistry of Microfluidics Gordon Research Conference and Gordon Research Seminar
2023年微流控物理与化学戈登研究会议暨戈登研究研讨会
- 批准号:
10681683 - 财政年份:2023
- 资助金额:
$ 55.53万 - 项目类别:
2017 Microfluidics, Physics and Chemistry of Gordon Research Conference and Gordon Research Seminar
2017戈登研究微流控、物理和化学会议暨戈登研究研讨会
- 批准号:
9406432 - 财政年份:2017
- 资助金额:
$ 55.53万 - 项目类别:
Mechanism of protein-mediated looping in a complex environment
复杂环境中蛋白质介导的循环机制
- 批准号:
9282460 - 财政年份:2014
- 资助金额:
$ 55.53万 - 项目类别: