GOALI: Nanofluidic Physics of CO2 Utilization and Storage in Shale and Tight Oil Reservoirs

目标:页岩和致密油储层二氧化碳利用和储存的纳流体物理

基本信息

  • 批准号:
    2246274
  • 负责人:
  • 金额:
    $ 55.53万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-01-15 至 2025-12-31
  • 项目状态:
    未结题

项目摘要

The petroleum industry in the US faces two pressing challenges. First, it needs to sequester CO2, but current technologies and cost structures are too expensive. Second, oil recovery is frustratingly low in its tight oil reservoirs dominated by nanoscale pores. A promising approach to addressing these challenges is to inject CO2 into tight oil reservoirs to enhance oil recovery and simultaneously sequester CO2. However, optimizing this operation is difficult because of the limited knowledge of nanoscale physics governing oil and CO2 transport and the uncertainties it brings to reservoir-scale modeling and prediction. The principal aim of this project is to understand such nanoscale flow physics and its impact on enhanced oil recovery and CO2 storage. This project will help engineers optimize CO2 utilization and sequestration operations in tight oil reservoirs with greater confidence, benefiting the petroleum industry and society. Insights from this study will also help understand similar transport phenomena of nanoconfined mixtures in areas such as water purification and mineral extraction, thus benefiting other industries. The project will encompass significant educational and outreach activities to underrepresented students, K12 students, and petroleum companies.This project aims to investigate the transport of oil and CO2 in tight oil reservoirs. The overarching hypothesis is that CO2 at oil-wall interfaces and its gradient along the pore wall modulate oil-CO2 transport in nanopores and ultimately impact oil recovery and CO2 storage at the reservoir scale. This hypothesis will be tested by integrating bench-scale experiments using membranes and real cores, molecular and continuum simulations, and theories. The specific aims are to investigate CO2-mediated oil flow in nanopores and elucidate the diffusion-driven exchange between nanopore-trapped oil and CO2 in fractures. This research will advance nanofluidic physics, including interlayer slippage, diffusio-osmosis due to CO2 gradient, and modulation of transport by surface diffusion. Furthermore, an industry-standard reservoir simulator will be enhanced with nanofluidic physics and used to delineate the impact of such physics on oil recovery and CO2 storage at the reservoir scale, which will help rapidly transfer fundamental knowledge gained in this project to practice. Students, especially those from underrepresented groups, will be recruited to join this project. Outreach programs at the PIs’ institutions will be leveraged to expose K12 students to fluid dynamics research and its contributions to society. Newsletters on pore-scale research in CO2 utilization and storage will be developed and distributed to researchers in the petroleum industry.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
美国石油业面临两大紧迫挑战。首先,它需要隔离二氧化碳,但目前的技术和成本结构过于昂贵。其次,在以纳米级孔隙为主的致密油藏中,石油采收率低得令人沮丧。应对这些挑战的一个有希望的方法是向致密油藏注入二氧化碳,以提高石油采收率,同时封存二氧化碳。然而,由于控制石油和二氧化碳运移的纳米级物理知识有限,以及它给油藏规模的建模和预测带来的不确定性,优化这一操作是困难的。该项目的主要目的是了解这种纳米尺度的流动物理及其对提高石油采收率和二氧化碳储存的影响。该项目将帮助工程师更有信心地优化致密油藏中二氧化碳的利用和封存作业,造福石油行业和社会。这项研究的见解还将有助于理解纳米受限混合物在净水和矿物提取等领域的类似传输现象,从而使其他行业受益。该项目将包括对代表性不足的学生、K12学生和石油公司的重要教育和推广活动。该项目旨在调查致密油储层中石油和二氧化碳的运输。最主要的假设是,油壁界面上的二氧化碳及其沿孔壁的梯度调节了石油-二氧化碳在纳米孔中的运移,最终影响了油藏规模的石油采收率和二氧化碳储存。这一假设将通过整合使用膜和真实岩芯的实验室规模实验、分子和连续介质模拟以及理论来验证。其具体目的是研究二氧化碳在纳米孔中的石油流动,并阐明纳米孔捕获的石油与裂缝中的二氧化碳之间的扩散驱动交换。这项研究将推动纳米流体物理的发展,包括层间滑移、二氧化碳梯度引起的扩散渗透以及表面扩散对传输的调制。此外,行业标准的油藏模拟器将用纳米流体物理进行增强,并用于描述这种物理对油藏规模上的石油开采和二氧化碳储存的影响,这将有助于将在该项目中获得的基础知识迅速转化为实践。将招募学生,特别是来自代表人数不足的群体的学生参加这一项目。将利用私人投资机构的外展计划,让K12学生接触流体动力学研究及其对社会的贡献。有关二氧化碳利用和储存的孔隙规模研究的通讯将被开发并分发给石油行业的研究人员。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Molecular insights of condensate trapping mechanism in shale oil reservoirs and its implications on lean gas enhanced oil recovery
  • DOI:
    10.1016/j.cej.2023.146366
  • 发表时间:
    2023-09
  • 期刊:
  • 影响因子:
    15.1
  • 作者:
    Shihao Wang;Hongwei Zhang;Bikai Jin;Rui Qiao;Xianhuan Wen
  • 通讯作者:
    Shihao Wang;Hongwei Zhang;Bikai Jin;Rui Qiao;Xianhuan Wen
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Erdal Ozkan其他文献

Characterisation of activation pressure, flowrate and spray angle for hollow-cone nozzles controlled by pulse width modulation
  • DOI:
    10.1016/j.biosystemseng.2022.04.002
  • 发表时间:
    2022-06-01
  • 期刊:
  • 影响因子:
    5.300
  • 作者:
    Ramón Salcedo;Heping Zhu;Hongyoung Jeon;Erdal Ozkan;Zhiming Wei;Emilio Gil
  • 通讯作者:
    Emilio Gil
A new pressure-rate deconvolution algorithm based on Laplace transformation and its application to measured well responses
  • DOI:
    10.1016/j.petrol.2017.06.060
  • 发表时间:
    2017-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Mahmood Ahmadi;Hossein Sartipizadeh;Erdal Ozkan
  • 通讯作者:
    Erdal Ozkan

Erdal Ozkan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Development of Nanofluidic Thermoelectric Devices Using Two-Dimensional Materials
使用二维材料开发纳米流体热电器件
  • 批准号:
    23K22681
  • 财政年份:
    2024
  • 资助金额:
    $ 55.53万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Combining Machine Learning and Nanofluidic Technology for The Multiplexed Diagnosis of Pancreatic Adenocarcinoma
结合机器学习和纳流体技术进行胰腺癌的多重诊断
  • 批准号:
    10613226
  • 财政年份:
    2023
  • 资助金额:
    $ 55.53万
  • 项目类别:
Ultra-long Acting Transcutaneously Refillable Islatravir Nanofluidic Implant for HIV Pre-Exposure
用于 HIV 暴露前的超长效经皮可再填充 Islatravir 纳米流体植入物
  • 批准号:
    10605334
  • 财政年份:
    2022
  • 资助金额:
    $ 55.53万
  • 项目类别:
Nanofluidic Energy Absorption of Metal-Organic Frameworks
金属有机框架的纳流体能量吸收
  • 批准号:
    MR/W012138/1
  • 财政年份:
    2022
  • 资助金额:
    $ 55.53万
  • 项目类别:
    Fellowship
Nanofluidic systems with integrated nanopores for macromolecular sensing, manipulation and confinement
具有集成纳米孔的纳米流体系统,用于大分子传感、操纵和限制
  • 批准号:
    RGPIN-2018-06125
  • 财政年份:
    2022
  • 资助金额:
    $ 55.53万
  • 项目类别:
    Discovery Grants Program - Individual
Development of Nanofluidic Thermoelectric Devices Using Two-Dimensional Materials
使用二维材料开发纳米流体热电器件
  • 批准号:
    22H01410
  • 财政年份:
    2022
  • 资助金额:
    $ 55.53万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
A Microfluidic/Nanofluidic System for Rapid Single Cell Proteomics
用于快速单细胞蛋白质组学的微流控/纳流控系统
  • 批准号:
    10547040
  • 财政年份:
    2022
  • 资助金额:
    $ 55.53万
  • 项目类别:
Advanced Nanofluidic and Microfluidic Strategies for Sustainable Water Treatment
用于可持续水处理的先进纳流体和微流体策略
  • 批准号:
    2751912
  • 财政年份:
    2022
  • 资助金额:
    $ 55.53万
  • 项目类别:
    Studentship
Ultra-long Acting Transcutaneously Refillable Islatravir Nanofluidic Implant for HIV Pre-Exposure
用于 HIV 暴露前的超长效经皮可再填充 Islatravir 纳米流体植入物
  • 批准号:
    10481727
  • 财政年份:
    2022
  • 资助金额:
    $ 55.53万
  • 项目类别:
Nano-valve for nanofluidic circuits: nano-bubble valve
用于纳米流体电路的纳米阀:纳米气泡阀
  • 批准号:
    21K18866
  • 财政年份:
    2021
  • 资助金额:
    $ 55.53万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了