Log-concave Inequalities in Combinatorics and Order Theory
组合学和序论中的对数凹不等式
基本信息
- 批准号:2246845
- 负责人:
- 金额:$ 15.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project focuses on the fundamental mathematical phenomena that emerge as a result of the underlying structure of objects that are often difficult to discern. Unimodality is a remarkable example of such a phenomenon, which is characterized by the presence of a single maximum or mode in a statistical distribution. This phenomenon has been observed in various objects, including student grade distributions and the frequency of earthquakes at a specific location. The project aims to analyze the precise mechanism of the emergence of such phenomena using approaches based on recent advances and techniques in combinatorics, probability, and order theory. The PI will mentor students as part of this project.More technically, the project deals with log-concave inequalities and correlation inequalities in combinatorial objects and their connections to the underlying combinatorial structure. Significant advancements have been made in this field in recent years, particularly with the solutions to the Heron-Rota-Welsh Conjecture and Mason's Conjecture in matroid theory being the most prominent examples of progress. The project aims to explore the combinatorial nature of these inequalities by developing purely combinatorial tools to generalize and strengthen them to match their equality conditions. On the order theory side, the project seeks to use these new insights to establish log-concave and correlation inequalities, which historically were crucial elements in deriving the best-known bound to the 1/3-2/3 Conjecture in order theory. The employed tools include a combination of classical tools from these fields, such as FKG-type inequalities in probability and mixed volume inequalities in geometry, along with some new tools such as Lorentzian polynomials and the combinatorial atlas method.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个项目的重点是基本的数学现象,这些现象是由于物体的底层结构而出现的,而这些结构往往很难辨别。单峰性是这种现象的一个显著例子,其特征在于统计分布中存在单个最大值或模式。这种现象已经在各种物体中观察到,包括学生的年级分布和特定地点的地震频率。该项目旨在分析这种现象出现的确切机制,使用基于组合学,概率和顺序理论的最新进展和技术的方法。PI将指导学生作为这个项目的一部分。更技术性地说,该项目涉及组合对象中的对数凹不等式和相关不等式及其与底层组合结构的连接。近年来,这一领域取得了重大进展,特别是在拟阵理论中的Heron-Rota-Welsh猜想和Mason猜想的解决方案是最突出的进展例子。该项目旨在探索这些不平等的组合性质,通过开发纯粹的组合工具来推广和加强它们,以匹配它们的平等条件。在序理论方面,该项目试图利用这些新的见解来建立对数凹和相关不等式,这些不等式在历史上是导出序理论中最著名的1/3-2/3猜想的关键因素。所采用的工具包括这些领域的经典工具的组合,如概率中的FKG型不等式和几何中的混合体积不等式,沿着一些新的工具,如洛伦兹多项式和组合图集方法。该奖项反映了NSF的法定使命,并被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Swee Hong Chan其他文献
Correlation inequalities for linear extensions
线性扩展的相关不等式
- DOI:
10.1016/j.aim.2024.109954 - 发表时间:
2024-12-01 - 期刊:
- 影响因子:1.500
- 作者:
Swee Hong Chan;Igor Pak - 通讯作者:
Igor Pak
Log-concave poset inequalities
对数凹偏序集不等式
- DOI:
10.56994/jamr.002.001.003 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Swee Hong Chan;I. Pak - 通讯作者:
I. Pak
Introduction to the combinatorial atlas
组合图谱简介
- DOI:
10.1016/j.exmath.2022.08.003 - 发表时间:
2022 - 期刊:
- 影响因子:0.7
- 作者:
Swee Hong Chan;I. Pak - 通讯作者:
I. Pak
A Bijection between Necklaces and Multisets with Divisible Subset Sum
- DOI:
10.37236/7804 - 发表时间:
2018-02 - 期刊:
- 影响因子:0
- 作者:
Swee Hong Chan - 通讯作者:
Swee Hong Chan
Linear extensions and continued fractions
线性扩展和连分数
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Swee Hong Chan;Igor Pak - 通讯作者:
Igor Pak
Swee Hong Chan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Improvement of readability of tactile graphics based on tactile reading analysis of concave stimuli for the visually impaired
基于对视障者凹面刺激的触觉阅读分析,提高触觉图形的可读性
- 批准号:
23H03257 - 财政年份:2023
- 资助金额:
$ 15.65万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Aiming at the development of a simple clothing pressure measuring device and the development of a measuring method for the concave surface and the minimum measurable curvature as ear straps
针对简易服装压力测量装置的研制以及耳带凹面和最小可测曲率的测量方法的研制
- 批准号:
22K02111 - 财政年份:2022
- 资助金额:
$ 15.65万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Brave new whorl: Vortex ring impingement on concave surfaces
勇敢的新螺纹:凹表面上的涡环冲击
- 批准号:
2211294 - 财政年份:2022
- 资助金额:
$ 15.65万 - 项目类别:
Standard Grant
CAREER: Determinantal, hyperbolic, and log-concave polynomials in theory and applications
职业:行列式、双曲式和对数凹多项式的理论和应用
- 批准号:
2153746 - 财政年份:2021
- 资助金额:
$ 15.65万 - 项目类别:
Continuing Grant
CBET-EPSRC: Transition and Turbulence in Compressible Boundary Layers Subjected to Concave Surface Curvature
CBET-EPSRC:受凹面曲率影响的可压缩边界层中的转变和湍流
- 批准号:
EP/T01167X/1 - 财政年份:2021
- 资助金额:
$ 15.65万 - 项目类别:
Research Grant
Microscale concave interfaces for structural reflective coloration
用于结构反射着色的微尺度凹面界面
- 批准号:
2111056 - 财政年份:2021
- 资助金额:
$ 15.65万 - 项目类别:
Standard Grant
CAREER: Determinantal, hyperbolic, and log-concave polynomials in theory and applications
职业:行列式、双曲式和对数凹多项式的理论和应用
- 批准号:
1943363 - 财政年份:2020
- 资助金额:
$ 15.65万 - 项目类别:
Continuing Grant
The estimation of disbond behavior of adhesively-bonded joints with the crack arrester of a convex/concave shape
凸/凹形状止裂器粘接接头脱粘行为的评估
- 批准号:
19K15215 - 财政年份:2019
- 资助金额:
$ 15.65万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Evaluation of Easily Readable Display Method of Concave Dot Stimulation on Tactile Map and Visually Impaired Tactile Reading Action
触觉地图凹点刺激易读显示方法及视障触觉阅读动作评价
- 批准号:
19H03986 - 财政年份:2019
- 资助金额:
$ 15.65万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CBET-EPSRC: Transition and Turbulence in Compressible Boundary Layers Subjected to Concave Surface Curvature
CBET-EPSRC:受凹面曲率影响的可压缩边界层中的转变和湍流
- 批准号:
1903393 - 财政年份:2019
- 资助金额:
$ 15.65万 - 项目类别:
Standard Grant